Электроны представляют идеальный квантовый бит. Если спин смотрит вверх, его значение равно 0, если вниз — 1. Эти биты еще меньше атомов, и поскольку они не слабо взаимодействуют между собой, то могут сохранять квантовое состояние долгое время. Однако, для использования электронов в качестве кубитов требуется, чтобы они были изолированы.
«Ключевой аспект экспериментов состоит в том, что мы интегрировали изолированные электроны с более комплексными сверхпроводящими квантовыми цепями», — говорит Гэ Ян, ведущий автор статьи. Ученые смогли поймать электроны, аккуратно перемещая их по поверхности жидкого гелия при крайне низких температурах.
Открыт новый способ контроля над квантовыми системами
Кейсы
Хотя в вакууме электроны хранят квантовую информацию почти идеально, в реальных материалах процесс нарушается из-за сотрясений находящихся поблизости атомов. Однако, электроны вступают с жидким гелием в уникальную реакцию — они парят над его поверхностью, не подверженные воздействию атомов, находящихся внизу.
Это происходит потому, что электроны видят собственное отражение в поверхности гелия. Поскольку у отражений противоположный заряд, оно их привлекает, а эффект квантовой механики отталквает. Поэтому электроны левитируют в 10 нанометрах над поверхностью гелия, довольно далеко по меркам атомов. И здесь их можно поймать и удерживать столько, сколько нужно.
«Электроны левитируют, кто бы мог подумать? С ума сойти можно, — говорит руководитель группы Дэвид Шустер. — Это позволят нам взаимодействовать с ними гораздо быстрее и с большей точностью».
На первой стадии эксперимента ученые работали с примерно 100 000 электронами — слишком большой группой, чтобы сосчитать или управлять ими механически. Дальнейшая задача — изолировать единственный электрон, поведение которого можно было бы изучить и контролировать, чтобы использовать потом как кубит, пишет EurekAlert.