Успехи машинного обучения зависят от открытий нейробиологии

Прорыв в создании ИИ, превосходящего человека в сложных играх, основан на успехах нейтронных сетей, имитирующих деятельность головного мозга человека. Исследователи Google DeepMind и Стэнфорда обновили теорию, объясняющую, как учатся люди и животные, и подчеркнули ее важность как фундамента для разработки искусственного интеллекта.

Опубликованная в 1995 году теория британского невролога Дэвида Марра гласит, что обучение — это продукт двух дополняющих систем. Первая система приобретает знания и навыки из опыта и наблюдения, а вторая хранит специфический опыт, чтобы его можно было воспроизвести и успешно интегрировать в первую систему.

Первая система в предложенной теории размещена в неокортексе мозга и напоминает современные нейронные сети. В них есть несколько слоев нейронов, и знание заключается в соединении этих нейронов. Опыт постоянно программирует эти связи узнавать определенные предметы, речь, делать оптимальный выбор.

Когда требуется изучить новую информацию, такие системы встают перед выбором — если сделать слишком большие изменения и слишком быстро, они разрушают уже накопленные знания, пишет Science Daily.

Когнитивные способности ИИ испытали в виртуальном лабиринте

«Вот где вступает в силу дополнительная система обучения, — говорит профессор Джеймс Макклилланд. — У млекопитающих она расположена в гиппокампе. Сохранив информацию о новом опыте в гиппокампе, мы сделали ее доступной для немедленного использования». Сочетание двух систем позволяет поэтому учиться быстро и структурировать знание, представленное в неокортексе.

Благодаря этим открытиям в теории обучения архитектура нейронных сетей смогла достичь человеческого уровня эффективности в компьютерных играх, таких как Space Invaders или Breakout, говорит Дхаршан Кумаран, главный автор статьи. «Как и в теории, эти нейронные сети используют буфер памяти, похожий на гиппокамп, который хранит последние эпизоды прохождения игры».

По словам второго автора работы, Демиса Хассабиса, «обновленная версия системы обучения с дополнением, скорее всего, останется основой для дальнейших исследований, не только в нейрологии, но и в развитии универсального искусственного интеллекта, к чему мы в Google DeepMind и стремимся».

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
Больше миллиона Гбит в секунду: японцы побили рекорд скорости передачи данных по оптоволокну
Новости
Хаос во благо: физики создали новый инструмент для квантового мира
Наука
Hugging Face выпустила недорогих человекоподобных роботов с открытым кодом
Новости
Китайский аккумулятор для электромобиля выдержал наезд 36-тонного танка
Новости
Воспитанники детских домов изучат основы работы с нейросетями
Новости
Четвероногий робот из Цюриха научился играть в бадминтон с людьми
Новости
В MIT раскрыли механизм набора веса из-за жирной пищи и как обратить его вспять
Наука
60 000 лет рядом: ученые выяснили, кто стал первым паразитом человека
Наука
Ректора Университета Иннополис избрали членом-корреспондентом РАН
Иннополис
В Корее робопса научили паркуру и бегу по стенам: посмотрите, что он может
Новости
Древний череп «человека-муравья» нашли в Аргентине
Наука
На селфи марсохода попал неожиданный объект: его заметили не сразу
Космос
Посмотрите на двух морских коньков, которых застукали за «поцелуем» в океане
Наука
Почти 10 000 роутеров Asus тайно заразили: как проверить свой и защититься
Новости
Ракета будет доставлять товары с AliExpress за час по всему миру: ее испытали в Китае
Новости
В России пригрозили «душить» иностранные сервисы: кто в опасности
Новости
Boston Dynamics усовершенствовала систему восприятия гуманоидного робота Atlas
Новости
Наклейка на лоб анализирует мозговые волны и предсказывает переутомление
Наука
Посмотрите на робота-трансформера, который меняет форму прямо в полете
Новости
Китай отправил миссию за образцами горных пород с квазиспутника Земли
Космос