Технологии 31 января 2017

Второй закон термодинамики может нарушаться в квантовом мире

Далее

Многие привычные нам законы классической физики могут оказаться неприменимы, когда речь заходит о квантовой физике. Ученые из МФТИ и РАН полагают, что в квантовых системах энтропия может убывать, нарушая второй закон термодинамики. Этой теме посвящена публикация в журнале Scientific Reports.

Ученые обнаружили условия, при которых второй закон термодинамики может локально нарушаться. Это может происходить в квантовых системах относительно небольшого, но макроскопического размера — сантиметры и даже метры. Существенное различие состоит в том, что если в классической физике уменьшение энтропии связано с передачей тепловой энергии, то в квантовом мире снижение энтропии может происходить без передачи энергии — за счет квантовой запутанности, сообщает пресс-служба МФТИ. В ближайшее время ученые планируют провести экспериментальную проверку этого эффекта. Такой эксперимент откроет возможность создания квантовых холодильников и двигателей нового типа.

«Представьте себе Золушку, которую мачеха заставляет разобрать перемешанную чечевицу и горох, то есть понизить энтропию в системе. Классическая Золушка в изолированной системе не смогла бы это сделать, а квантовая — может. Мы можем „вычистить“ состояния за счет квантовых эффектов», — говорит Гордей Лесовик, сотрудник МФТИ, под руководством которого работала группа ученых.

Плавучие острова для миллиардеров начнут строить в 2019 году

Большинство процессов в рамках классической физики независимы от направления «стрелы времени»: любой из них можно развернуть в обратную сторону и никакие законы не будут нарушены. Однако симметрия по времени нарушается во втором законе термодинамики, который гласит, что тепловая энергия не может переходить от менее горячих объектов к более горячим, поэтому развернуть этот процесс в обратную сторону нельзя.

В 1870 годах принцип роста энтропии был сформулирован в более строгой форме Людвигом Больцманом в его так называемой H-теореме. Она гласит, что величина энтропии в замкнутой системе, состояние которой описывается кинетическим уравнением (называемым теперь уравнением Больцмана), либо растет, либо остается постоянной. Долгое время эту теорему не удавалось доказать в рамках традиционной статистической физики без привлечения дополнительных ограничений. После появления квантовой механики ученые предположили, что «корни» H-теоремы связаны с квантовыми явлениями. В квантовой теории информации были получены важные результаты, описывающие условия, при которых энтропия системы не убывает.

Kreisel и Шварценеггер представили электрический Mercedes G 350

Группа под руководством Лесовика впервые сформулировала H-теорему на языке квантовой физики и в течение нескольких лет пыталась найти ее доказательство. «Мы пытались доказывать: вроде бы, получалось, потом обнаруживалась „дырка“, мы ее закрывали, затем „дырки“ появлялись опять, и в конце концов мы поняли, что это неспроста, что, может быть, эта теорема и не верна для квантовой системы и, даже если система энергетически изолирована, этого недостаточно, чтобы энтропия не убывала», — говорит Лесовик.