Сообщить об ошибке на сайте
URL
Ошибка
Тренды

Нейронная сеть впервые была применена для создания новых лекарственных препаратов разработчиками из Mail.Ru Group, Insilico Medicine и МФТИ. Для этого они использовали технологии генеративных нейронных состязательных сетей, обученных «придумывать» молекулярные структуры, сообщает пресс-служба Mail.ru Group.

«Мы сделали нейронную сеть генеративного типа, то есть умеющую создавать схожие вещи, на которых она обучалась», — говорит один из авторов исследования, аспирант МФТИ Андрей Казеннов. Нейронная сеть обучалась на фингерпринтах молекул. Фингерпринт — это «отпечаток пальца» молекулы, который содержит в себе всю информацию о ней. Данные, которые содержатся в таком отпечатке, позволяют восстановить структуру молекулы.

На данный момент в базе неорганических молекул порядка 72 миллионов веществ, и только доля процента из них используется в лекарственных препаратах. Фармакологические методы создания лекарств носят, в основном, наследственный характер. Например, фармакологи продолжают исследовать аспирин, который применяется уже полтора века, что-то добавляют к молекуле, чтобы снизить побочные эффекты или повысить эффективность, но это все то же вещество. Как выбрать из 72 млн принципиально новую молекулу, обладающую лечебными свойствами? Эту задачу и решали российские исследователи с помощью нейронной сети.

На вход искусственному интеллекту подавались «отпечатки» известных лекарственных молекул. Сеть должна была распределить веса параметров внутренних нейронов так, чтобы при заданном входе получился заданный же выход. Эта операция повторялась много раз — так происходит обучение на большом количестве данных. В результате получается «черный ящик», который умеет при заданном входе давать заданный выход. Затем разработчики убрали первые слои, и сеть генерировала фингерпринты при обратном прогоне уже сама. Ученые построили «отпечатки» для всех 72 млн молекул, и далее сравнивали сгенерированные сетью фингерпринты с базой.

Для проверки сети использовали патентную базу противораковых лекарств. Сначала обучали сеть на части лекарственных форм и проверяли на второй части. Задача была в том, чтобы предсказать уже известные формы, но такие, которых не было в обучающей выборке. На 69 из предсказанных ИИ веществ уже есть патенты.

«Генеративные состязательные сети с применением обучения с подкреплением — это будущее фармакологии. В этой статье мы показали первое применение генеративных состязательных автокодировщиков, GAN’ов, для создания новых молекулярных структур противоопухолевых препаратов по определенным параметрам. Эта работа была сделана еще прошлым летом, и с тех пор мы значительно продвинулись в этом направлении. Я очень надеюсь, что в скором времени мы сможем разрабатывать индивидуальные лекарства для лечения редких заболеваний и даже для лечения отдельных пациентов. Уже в этом году искусственный интеллект начнет трансформировать фармацевтическую индустрию», — говорит один из авторов исследования, глава Insilico Medicine и международный адъюнкт-профессор МФТИ Александр Жаворонков.

«GAN’ы находятся сейчас на переднем крае нейронауки. Совершенно очевидно, что они могут быть использованы на более широком спектре задач, чем генерация картинок и музыки. Мы попробовали применить этот подход в биоинформатике и получили прекрасный результат», — резюмирует ведущий программист группы оптимизации поиска Mail.Ru Group, независимый научный консультант Insilico Medicine Артур Кадурин.

Загрузка...
Подписывайтесь на наши каналы в Telegram

«Хайтек» - новости онлайн по мере их появления

«Хайтек» Daily - подборки новостей 3 раза в день

Дмитрий Филатов, Sistema_VC: стартапы — это в первую очередь про людей, а во вторую — про деньги
Мнения
Эра Data Science: как меняется бизнес с приходом big data и новых технологий
Тренды
Народ против транспорта: почему люди недовольны, когда в городах строят новые станции метро
Идеи
«Лиза Алерт»: как беспилотники и краудсорсинг помогают искать пропавших людей
Кейсы
Беспилотники против велосипедистов: как безопасные автомобили сделают жизнь людей хуже
Идеи
Кейсы
SONM: как люди будут зарабатывать на собственных компьютерах с помощью блокчейна
Егор Матешук, ostrovok.ru: проблемы big data можно решить, закидывая пачки денег в топку
Мнения
Художник-граффитист Миша Most: технология — это кисть, которая создает будущее
Мнения
Лунная гонка: как мировые державы собираются присвоить себе спутник Земли
Идеи
Итоги Нобелевской недели. За что дали Нобелевскую премию в 2018 году?
Тренды
Руслан Шагалеев, Иннополис: война между корпорациями и городами ведется за человеческий капитал
Идеи
Кристина Хаверкамп, DENA: цена на электроэнергию должна сильнее коррелировать c погодой: много солнца и ветра — дешево, мало — дорого
Тренды
Тренды
7 лучших книг о технологиях и науке на русском языке, вышедших в 2018 году
Микрореволюция: фермеры с помощью микробов спасут мир от голода
Идеи
Мнения
Александр Тормасов, Университет Иннополис: мозги людей могут быть совершенно не готовы к восприятию новых идей
Одежда, которая поможет миру: костюм-помощник, майка-тренер и носок-няня
Тренды
В ожидании первого удара: как США готовятся к атаке со стороны России и Китая
Тренды
Страшнее метана: какие еще промышленные выбросы разрушают озоновый слой
Тренды
Интеллект большого города: как данные и умные алгоритмы улучшают качество жизни в мегаполисах
Тренды
На защите европейцев: как GDPR стал дырой в бюджете российских ИТ-компаний
Мнения
Игорь Балк, Global Innovation Labs: в XXI веке приватности нет и не будет
Тренды
Deneum: как заниматься холодным ядерным синтезом и бороться с сомнениями ученых
Кейсы
Расист, оружие и предвзятый судья — каким станет искусственный интеллект в будущем
Тренды
На совести информаторов: как громкие скандалы вокруг АНБ, Facebook и Tesla изменили мир
Тренды
NativeOS: нативная реклама в видео без репутационных потерь и терроризма от режиссера короткометражек
Кейсы
Тренды
Тихий убийца: как микропластик вызывает болезни и останавливает репродукцию живых организмов
Гонка для JavaScript-разработчиков: как постоянные обновления мешают работе
Тренды
Big data на страже здоровья: как и зачем медицинские организации собирают и хранят данные
Тренды
Николь Миллс, Booking.com — об инновациях, agile-подходе и индустрии впечатлений
Кейсы
Слишком опасный нанопластик: как одноразовые пакеты превращаются в частицы-убийцы
Тренды
Идеи
Человек и квантовая теория: существует ли то, что мы не наблюдаем
Здесь может быть ваша реклама: НАСА планирует заработать на космосе миллионы
Тренды
Опасный криптотрейдинг: как киберпреступники угрожают виртуальным сбережениям и биржам
Тренды
Как через 20 лет будет выглядеть армия будущего
Тренды
5 финансовых инструментов, которые помогут инвесторам даже после падения криптовалюты
Тренды
Александр Лямин, Qrator Labs: наша задача — выработать у людей цифровую гигиену, чтобы они «не ели с помойки»
Кейсы
Эдуард Фош Вильяронга: люди видят в роботе только внешность, забывая, что он следит за ними
Тренды
Доктор Куэй Во-Райнард, HIT Foundation: если страна требует суверенитета данных, мы построим для нее отдельный блокчейн
Кейсы
Роботы против мигрантов: какой вклад в ксенофобию и расизм делают технологии ИИ
Тренды
Идеи
«Хакинтош»: как собрать свой собственный Mac лучше, чем у Apple
Война скриптов — искусственный интеллект против навязчивой рекламы
Тренды
Как заново изобрести супермаркет: осознанность потребления, этика производства и роботы
Тренды
Каждый человек станет сам себе банком: цифровой мир отказывается от посредников между бизнесом и клиентом
Тренды
Архитектор вычислительной инфраструктуры «Платона» Александр Варламов — о будущем ИТ-индустрии в России, стартапах и разработке
Кейсы
Дмитрий Богданов, капитан сборной России по CS:GO — о стиле жизни киберспортсмена, тренировках и блокировках РКН
Тренды
Прайсинг, трекинг, скоринг, биллинг и другие технологии, которые двигают российский бизнес
Тренды
Идеи
Космос — наш дом: что осталось решить ученым, чтобы поселить человека за пределами Земли
«Педиатр 24/7»: как телемед-стартап подарил родителям спокойствие, а врачам — работу
Кейсы
Вас снова обманули: как человечество учит компьютеры определять фейки в интернете
Тренды