Сообщить об ошибке на сайте
URL
Ошибка
Тренды

Нейронная сеть впервые была применена для создания новых лекарственных препаратов разработчиками из Mail.Ru Group, Insilico Medicine и МФТИ. Для этого они использовали технологии генеративных нейронных состязательных сетей, обученных «придумывать» молекулярные структуры, сообщает пресс-служба Mail.ru Group.

«Мы сделали нейронную сеть генеративного типа, то есть умеющую создавать схожие вещи, на которых она обучалась», — говорит один из авторов исследования, аспирант МФТИ Андрей Казеннов. Нейронная сеть обучалась на фингерпринтах молекул. Фингерпринт — это «отпечаток пальца» молекулы, который содержит в себе всю информацию о ней. Данные, которые содержатся в таком отпечатке, позволяют восстановить структуру молекулы.

На данный момент в базе неорганических молекул порядка 72 миллионов веществ, и только доля процента из них используется в лекарственных препаратах. Фармакологические методы создания лекарств носят, в основном, наследственный характер. Например, фармакологи продолжают исследовать аспирин, который применяется уже полтора века, что-то добавляют к молекуле, чтобы снизить побочные эффекты или повысить эффективность, но это все то же вещество. Как выбрать из 72 млн принципиально новую молекулу, обладающую лечебными свойствами? Эту задачу и решали российские исследователи с помощью нейронной сети.

На вход искусственному интеллекту подавались «отпечатки» известных лекарственных молекул. Сеть должна была распределить веса параметров внутренних нейронов так, чтобы при заданном входе получился заданный же выход. Эта операция повторялась много раз — так происходит обучение на большом количестве данных. В результате получается «черный ящик», который умеет при заданном входе давать заданный выход. Затем разработчики убрали первые слои, и сеть генерировала фингерпринты при обратном прогоне уже сама. Ученые построили «отпечатки» для всех 72 млн молекул, и далее сравнивали сгенерированные сетью фингерпринты с базой.

Для проверки сети использовали патентную базу противораковых лекарств. Сначала обучали сеть на части лекарственных форм и проверяли на второй части. Задача была в том, чтобы предсказать уже известные формы, но такие, которых не было в обучающей выборке. На 69 из предсказанных ИИ веществ уже есть патенты.

«Генеративные состязательные сети с применением обучения с подкреплением — это будущее фармакологии. В этой статье мы показали первое применение генеративных состязательных автокодировщиков, GAN’ов, для создания новых молекулярных структур противоопухолевых препаратов по определенным параметрам. Эта работа была сделана еще прошлым летом, и с тех пор мы значительно продвинулись в этом направлении. Я очень надеюсь, что в скором времени мы сможем разрабатывать индивидуальные лекарства для лечения редких заболеваний и даже для лечения отдельных пациентов. Уже в этом году искусственный интеллект начнет трансформировать фармацевтическую индустрию», — говорит один из авторов исследования, глава Insilico Medicine и международный адъюнкт-профессор МФТИ Александр Жаворонков.

«GAN’ы находятся сейчас на переднем крае нейронауки. Совершенно очевидно, что они могут быть использованы на более широком спектре задач, чем генерация картинок и музыки. Мы попробовали применить этот подход в биоинформатике и получили прекрасный результат», — резюмирует ведущий программист группы оптимизации поиска Mail.Ru Group, независимый научный консультант Insilico Medicine Артур Кадурин.

Загрузка...
Подписывайтесь на наши каналы в Telegram

«Хайтек» - новости онлайн по мере их появления

«Хайтек» Daily - подборки новостей 3 раза в день

Биоценоз в фарме: зачем нужна альтернатива антибиотикам и как работают лекарства нового поколения
Тренды
Чарльз Адлер, co-founder Kickstarter: я — панк-рокер, который раздвигает границы
Кейсы
Как ИИ меняет медицину: личный помощник для врачей, маршрутизатор в клиниках и разработчик лекарств
Кейсы
Эдвин Диндер, Huawei Technologies: умный город — это ничто
Мнения
«Если изобретение с ИИ не приносит пользу, сам продукт никому не нужен»
Мнения
Feature engineering: шесть шагов для создания успешной модели машинного обучения
Тренды
Мнения
Человек — это набор из пяти чисел: Игорь Волжанин, DataSine — о психотипировании с помощью big data
Карло Ратти, Senseable City Laboratory (MIT) — о городах будущего, третьей коже человека и роболодках
Тренды
Мы все — сенсоры: CEO SQream Ами Галь — о том, как обрабатывают big data
Кейсы
Что такое скрапинг: как Amazon, Walmart и другие ритейлеры используют ботов в борьбе с конкурентами
Идеи
Почему китайские подлодки-беспилотники станут самым опасным врагом под водой?
Идеи
Филипп Роуд, LSE Cities: самый кошмарный сценарий — беспилотники, ездящие по городу, чтобы не платить за парковку
Мнения
Юрий Корженевский — о том, как построить безопасные системы для банков на блокчейне
Блокчейн
Иннополис
Russian Robot Olympiad: как дети строят роботов и решают реальные инженерные проблемы
Тренды
MyGenetics: ДНК-тесты, помогающие «взломать» организм, как компьютер
Trade-to-Mine: как биржи привлекают трейдеров в условиях падения рынка
Блокчейн
Дмитрий Фадин, 3D Bioprinting Solutions — о будущем биопринтинга и печати органов в космосе
Мнения
IoT изменит все: какие умные технологии принесут бизнесу экономию, безопасность и инновации
Тренды
Как высокие технологии побуждают нас покупать билеты и туристические услуги
Тренды
Чем плоха Кремниевая долина для IT-стартапов из России: дорого, неудобно и нет транспорта
Мнения
Жить по-умному: как защитить свой дом и не бояться киберугроз
Умный дом
Андрей Синогейкин, Wonder Technologies, — об искусственных алмазах
Тренды
Никита Бокарев, ESforce, — о деньгах, киберспорте и его немаргинальности
Тренды
Тренды
YouTube-депрессия: как создатели популярных каналов боятся потерять подписчиков и разум
Гельмут Райзингер, Orange Business Services, — об IIoT, 5G и телеком-стартапах
Мнения
«Робот берет вас на работу»: как искусственный интеллект, блокчейн и VR подбирают персонал
Мнения
Телемедицина, роботы и умные дома: каким через 5 лет будет «оцифрованный» город в России
Тренды
Мясная революция: как перейти от веганских заменителей к клеточным технологиям и биореакторам
Идеи
AI-выборы: как искусственный интеллект и голосовые помощники сделают демократию лучше
Тренды
Идеи
Тупик для беспилотников: как мечты разработчиков разбиваются о неожиданности на дорогах
Здесь нужен InsurTech: за какими стартапами будущее страхования
Мнения
Вирус лженауки в Google: как поисковые системы распространяют опасные мифы о прививках
Идеи
«Кто-то управляет моим домом»: как жертв домашнего насилия терроризируют с помощью умных устройств
Умный дом
Паскаль Фуа, EPFL, — о ключевых точках, глубоких нейросетях и эпиполярной геометрии
Мнения
20 фильмов о кибербезопасности, взломах и цифровых преступлениях
Тренды
Ян Лекун, Facebook: прогностические модели мира — решающее достижение в ИИ
Мнения
Джианкарло Суччи: «Попытка спроектировать программу без багов — утопия»
Иннополис
Game out: Как видеоигры обучают детей-аутистов держать равновесие и узнавать людей
Тренды
Прослушка, контроль камеры и предсказание смерти пользователя: самые странные патенты Facebook
Кейсы
Цес Снук, QUVA: мы не хотим зависеть от крупных компаний, которые владеют всеми данными
Мнения
Дмитрий Песков, АСИ: «В России традиционно долго запрягают, и в сфере IT мы только этим и занимаемся»
Иннополис
Мнения
ДНК-тесты: как генетические компании обманывают людей и разрушают семьи
Мануэль Маццара: «Для Facebook вы не покупатель, вы — продукт»
Иннополис
Тренды
Блокчейн, искусственное мясо и «смерть» смартфонов: что будет с технологиями через 10 лет
Витторио Феррари, Google: «Чтобы машина распознала книгу о Гарри Поттере нужна сложная математическая модель»
Мнения
7 медицинских технологий, которые скоро придут в российские больницы
Идеи
Руслан Зайдуллин, основатель Doc+, — о том, что делать Минздраву и о проблемах в российской медицине
Мнения
Ричард Вдовьяк, Philips: «В будущем диагностировать заболевания будут не только врачи, но и сами пациенты»
Тренды
Шедевры за биткоины: Как криптовалюта меняет рынок искусства
Блокчейн