Сообщить об ошибке на сайте
URL
Ошибка
Идеи

Технологии лишили ученых понимания ключевых принципов исследования — теперь за них «думает» машинный интеллект. О трансформациях науки и новых вызовах рассказывает биохимик Венкатраман Рамакришнан — лауреат Нобелевской премии и президент Лондонского королевского общества естественных наук.

В интервью журналу Edge биохимик Венкатраман Рамакришнан рассказал, как совместно с коллегами он занимался изучением структуры и функций рибосомы, за что в 2009 году получил Нобелевскую премию по химии. Ученый на этом примере пояснил, как сильно изменились возможности науки за прошедшее с тех пор недолгое время.

Рамакришнану с коллегами ранее приходилось пользоваться рентгеновской кристаллографией, изобретенной еще в середине XX века. Сегодня для изучения рибосомы кристаллография больше не нужна. На передний план вышла электронная микроскопия, которая позволяет рассмотреть по-разному ориентированные рибосомы одновременно. На процесс уходят не годы, как раньше, а несколько дней. «Это мечта структурного биолога», — говорит Рамакришнан.

По мнению биохимика, мы находимся на пороге новой эры структурной биологии и науки вообще. То, что когда-то казалось сложным и трудоемким, становится доступным и относительно простым. Медицину ждут глобальные изменения, а науку ожидает настоящий прорыв, уверен Рамакришнан.

Однако у научного прогресса есть и обратная сторона. «Люди верят, что если ученый делает заявление, то оно построено на веских доказательствах. Более того, другие ученые-конкуренты внимательно эти доказательства проверяют», — говорит Рамакришнан. В действительности все не так. Та же электронная микроскопия привела к тому, что при изучении рибосомы в ходе каждого исследования генерируется несколько терабайт данных. Для обработки такого массива информации нужны компьютерные алгоритмы. И тут возникает большая проблема: ученые не понимают, чем руководствуются машины, обрабатывая научную информацию и выдавая людям готовый результат.

Компьютеры распознают некие образцы с помощью нейросетей, а те, в свою очередь, формулируют правила обработки информации на основе паттернов, которым был обучен искусственный интеллект. При этом, статистические алгоритмы сами определяют, какие полученные в ходе научных исследований данные действительно важны, а какие можно отбросить, списав на статистическую погрешность. «Как они приходят к выводам, мы не имеем никакого понятия. Просто в общих чертах знаем сам процесс», — замечает ученый.

Со временем объемы данных станут больше, исследования будут вестись на уровне генома или целой популяции, а контролировать работу алгоритмов будет все сложнее. Ученые будут все больше отстраняться от данных, поручая работу с ними ИИ-посредникам.

Другая проблема науки будущего, по мнению Рамакришнана, — это проблема культуры. Интернет, с одной стороны, сделал информацию доступной и упростил коммуникацию в научном сообществе. В то же время он породил массу источников, которые используют псевдонаучный жаргон и играют в науку.

Но и профессионалы могут ошибаться. В науке всегда было место ошибкам, и каждый ученый живет с осознанием того, что его открытие со временем может быть опровергнуто. Однако сегодня ложная информация распространяется стремительнее, чем прежде. Первое исследование по какой-либо теме получает широкое освещение в СМИ. Последующие исследования, уточняющие или опровергающие прошлые тезисы, уже не получают такой огласки. В итоге у людей формируется отрывочная картина научного явления.

Технологические и культурные вызовы несут угрозу науке, которая так стремительно прогрессирует. Понимание молекулярной структуры клетки и создание новых лекарств может обернуться распространением дезинформации, поспешными выводами и ошибочными решениями. Рамакришнан не говорит об этом напрямую и в целом подчеркивает, что положительно относится к машинному интеллекту и другим технологиям. Однако он считает, что людям следует прогрессировать одновременно с технологиями. А бояться людям следует не столько ИИ и роботов, сколько тех, кто живет на планете с древнейших времен и отлично адаптируется к широкому спектру условий, то есть бактерий.

Загрузка...
Подписывайтесь на наши каналы в Telegram

«Хайтек» - новости онлайн по мере их появления

«Хайтек» Daily - подборки новостей 3 раза в день

Big data на страже здоровья: как и зачем медицинские организации собирают и хранят данные
Тренды
Николь Миллс, Booking.com — об инновациях, agile-подходе и индустрии впечатлений
Кейсы
Слишком опасный нанопластик: как одноразовые пакеты превращаются в частицы-убийцы
Тренды
Здесь может быть ваша реклама: НАСА планирует заработать на космосе миллионы
Тренды
Идеи
Человек и квантовая теория: существует ли то, что мы не наблюдаем
Опасный криптотрейдинг: как киберпреступники угрожают виртуальным сбережениям и биржам
Тренды
Как через 20 лет будет выглядеть армия будущего
Тренды
5 финансовых инструментов, которые помогут инвесторам даже после падения криптовалюты
Тренды
Александр Лямин, Qrator Labs: наша задача — выработать у людей цифровую гигиену, чтобы они «не ели с помойки»
Кейсы
Эдуард Фош Вильяронга: люди видят в роботе только внешность, забывая, что он следит за ними
Тренды
Доктор Куэй Во-Райнард, HIT Foundation: если страна требует суверенитета данных, мы построим для нее отдельный блокчейн
Кейсы
Идеи
«Хакинтош»: как собрать свой собственный Mac лучше, чем у Apple
Роботы против мигрантов: какой вклад в ксенофобию и расизм делают технологии ИИ
Тренды
Война скриптов — искусственный интеллект против навязчивой рекламы
Тренды
Как заново изобрести супермаркет: осознанность потребления, этика производства и роботы
Тренды
Каждый человек станет сам себе банком: цифровой мир отказывается от посредников между бизнесом и клиентом
Тренды
Архитектор вычислительной инфраструктуры «Платона» Александр Варламов — о будущем ИТ-индустрии в России, стартапах и разработке
Кейсы
Дмитрий Богданов, капитан сборной России по CS:GO — о стиле жизни киберспортсмена, тренировках и блокировках РКН
Тренды
Идеи
Космос — наш дом: что осталось решить ученым, чтобы поселить человека за пределами Земли
Прайсинг, трекинг, скоринг, биллинг и другие технологии, которые двигают российский бизнес
Тренды
«Педиатр 24/7»: как телемед-стартап подарил родителям спокойствие, а врачам — работу
Кейсы
Вас снова обманули: как человечество учит компьютеры определять фейки в интернете
Тренды
БиСи Бирман, Heavy Projects: ИИ должен иметь несовершенства — это элемент случая
Мнения
Артем Геллер, lab.ag: делая сервис для государства, ты помогаешь своей бабушке
Мнения
Акселераторы и инкубаторы: что выбрать стартапу на раннем этапе развития
Мнения
Вопрос доверия: как и почему изменилось отношение к телемедицине в России
Тренды
Правительственные криптопесочницы: как освободить финтех от давления закона и защитить потребителей
Тренды
Кейсы
Роман Нестер, Segmento: я верю корпорациям больше, чем маленьким компаниям
Суперагенты в недвижимости: как блокчейн и большие данные заменяют риелторов
Тренды
СМИ будущего: вертикальные видео, новости по запросу и смерть сайтов
Тренды
Тренды
Колонизация отменяется: почему терраформирование невозможно на Марсе
Сет Стивенс-Давидовиц: у людей гораздо больше непристойных и скверных мыслей, чем мы думали
Мнения
Умные города подвергают своих жителей опасности из-за датчиков освещения и радиации
Тренды
Геронтолог Обри ди Грей: жизнь длиной в тысячу лет — это побочный эффект поиска вечного здоровья
Мнения
Биоценоз в фарме: зачем нужна альтернатива антибиотикам и как работают лекарства нового поколения
Тренды
Чарльз Адлер, co-founder Kickstarter: я — панк-рокер, который раздвигает границы
Кейсы
Как ИИ меняет медицину: личный помощник для врачей, маршрутизатор в клиниках и разработчик лекарств
Кейсы
Эдвин Диндер, Huawei Technologies: умный город — это ничто
Мнения
«Если изобретение с ИИ не приносит пользу, сам продукт никому не нужен»
Мнения
Feature engineering: шесть шагов для создания успешной модели машинного обучения
Тренды
Мнения
Человек — это набор из пяти чисел: Игорь Волжанин, DataSine — о психотипировании с помощью big data
Карло Ратти, Senseable City Laboratory (MIT) — о городах будущего, третьей коже человека и роболодках
Тренды
Мы все — сенсоры: CEO SQream Ами Галь — о том, как обрабатывают big data
Кейсы
Что такое скрапинг: как Amazon, Walmart и другие ритейлеры используют ботов в борьбе с конкурентами
Идеи
Почему китайские подлодки-беспилотники станут самым опасным врагом под водой?
Идеи
Филипп Роуд, LSE Cities: самый кошмарный сценарий — беспилотники, ездящие по городу, чтобы не платить за парковку
Мнения
Юрий Корженевский — о том, как построить безопасные системы для банков на блокчейне
Блокчейн
Иннополис
Russian Robot Olympiad: как дети строят роботов и решают реальные инженерные проблемы
MyGenetics: ДНК-тесты, помогающие «взломать» организм, как компьютер
Тренды