Ученые из Центра функциональных наноматериалов (CFN) в Брукхейвенской национальной лаборатории (Минэнерго США) представили метод сокращения бликов со стеклянных поверхностей путем внедрения в материал наночастиц, пишет Science Daily.
Когда свет сталкивается с высоким индексом преломления (луч света преломляется, переходя из одного материала в другой, например, из воздуха в стекло), часть света отражается. Изменение структуры стекла на наноуровне позволяют сделать переход индекса более плавным и, тем самым, избежать отражения и бликов. Ультрапрозрачное наностекло отражает свет в широком диапазоне волн (фактически, оно отражает весь видимый и ближний инфракрасный спектр) и под большим углом обзора. Блики уменьшаются настолько, что стекло, по сути, становится невидимым.
Главное применение технологии — экраны для смартфонов, компьютеров и телевизоров, которые на солнце часто создают блики. Также наностекло может повысить эффективность солнечных батарей, сведя к минимуму потерю энергии, связанную с отражением света. Наконец, сокращение бликов может быть полезным при изготовлении лазеров, чувствительных медицинских устройств и в аэрокосмической отрасли.
Для создания особой поверхности стекла ученые использовали метод «самосборки» — способность некоторых материалов спонтанно создавать упорядоченные структуры. В этом случае «самосборка» блокчного сополимерного материала позволила создать шаблон для гравирования поверхности стекла в виде «леса» конусообразных наноструктур с заостроенными краями. Подобная геометрия полностью исключает блики. Блочные сополимеры — промышленные полимеры (повторяющиеся цепочки молекул), которые можно найти во многих предметах, включая подошву для обуви, клейкую ленту и салоны автомобилей.
McKinsey: «Amazon отнимает деньги у банков»
Мнения
«Этот простой метод можно использовать для гравирования любого материала, при этом полностью контролируя размер и форму наноструктур, — говорит один из авторов исследования Атикур Рахман, профессор физического факультета Индийского института научного обучения и исследований в Пуне. — Это гораздо эффективнее создания отдельного покрытия».
Чтобы количественно оценить производительность наноструктурированных стеклянных поверхностей, ученые измерили количество света, прошедшего через разные поверхности и отраженного от них. Выяснилось, что чем выше находятся конусы структур, тем меньше света они отражают. Например, стеклянные поверхности, покрытые наноструктрой размером 300 нанометров, отражают менее 0,2% входящего красного цвета (длина волны 633 нанометра). Даже при использовании околоинфракрасной волны длиной 2500 нанометров и углах обзора до 70° поверхность пропускает 90-95% света.
В другом эксперименте они сравнили производительность коммерческих солнечных элементов, сделанных из кремния, с нанопокрытием и без него. Оказалось, что в обоих случаях количество генерируемого тока было одинаковым. А под воздействием лазера наностекло способно выдержать в три раза больше оптической энергии, нежели обычное стекло с доступными на рынке отражающими покрытиями.
Получив гражданство Саудовской Аравии, робот София раскритиковала Маска
Кейсы
Исследователи Венского технического университета с коллегами из Греции и США разработали узор, который позволяет предметам пропускать световые волны, делая их невидимыми.