Ученые перестали понимать, как работает ИИ

Ученые и программисты перестали понимать, как именно принимает решения искусственный интеллект. Об этой проблеме заявили сразу несколько специалистов на главной ИИ-конференции – Neural Information Processing Systems, – прошедшей в Лонг-Бич (Калифорния), пишет Quartz.

Эксперты, с которыми пообщались в Quartz, говорят, что нужно действовать, пока система не стала слишком сложной. «Мы не хотим принимать за должное решения ИИ, без понимания их логики, — говорит Джейсон Йосински из Uber. — Чтобы общество приняло модели машинного обучения, мы должны знать, как ИИ принимает решения».

Проблема, которую многие эксперты называют «черной коробочкой», действительно серьезная. Предыдущий опыт показал, что ИИ имеет склонность принимать предвзятые решения и проводить аналогии там, где их не следовало бы проводить. Ошибка ИИ может обойтись очень дорого, например, во время таких операций, как космическая миссия на Марс. Аппараты находятся в 200 млн миль от Земли и стоят сотни миллионов долларов, говорит Кири Вагстафф ИИ-эксперт в Jet Propolusion Lab (NASA).

Ученые к счастью, пытаются находить методы, позволяющие понять логику искусственного интеллекта. Так, исследователь из Google Мэтра Рагху представила доклад, в котором описывается процесс отслеживания действий отдельных «нейронов» нейросети. Анализируя миллионы операций, ей удалось понять, какие из искусственных «нейронов» концентрировались на неверных представлениях, и отключить их. Это доказывает, что перевод работы нейросетей в форму, доступную для понимания человека, — не такая уж невозможная задача. «Это похоже на то, как школьные учителя просят детей пересказать своими словами, что они поняли из объяснений учителя», — говорит Вагстафф.

ИИ помог найти природные аналоги лекарств против рака и старения

Принцип глубокого обучения был создан по аналогии с работой мозга. Однако ученые решили проверить, на самом ли деле человек усваивает информацию таким образом. Оказалось, что человеческие нейроны действительно идеально подходят для приемов глубокого обучения.

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
Квантовые симуляторы: объяснение от ученого
Мнения
Источник в СМИ назвал возможную причину сбоя рунета
Новости
Мошенники начали выдавать себя за начальников в рабочих чатах: как это работает
Новости
Холодные атомы этого металла могут создавать новые состояния материи
Наука
Древние артефакты в Украине раскрыли тайны навигации викингов
Наука
Послушайте, как звучат вспышки на Солнце: данные собрал Solar Orbiter  
Космос
Тяжелый беспилотник на водородных топливных ячейках впервые испытали в Китае
Новости
Ученые создали катализатор, который нарушает законы физики
Наука
Физики обнаружили необычные магнитные свойства в трехслойном графене
Наука
Биоинженеры создали ДНК-робота, который может менять форму искусственной клетки
Наука
«Горы» на нейтронных звездах могут вызывать рябь в пространстве-времени
Космос
На телах древних мумий из Перу нашли сложные узоры татуировок
Наука
У черной дыры прячется белый карлик, движущийся с половиной скорости света
Космос
Стартап из России разрабатывает нанопротез для восстановления поврежденных нервов
Наука
Генетики разгадали секреты выживания устойчивой к антибиотикам бактерии
Наука
Астрофизики разгадали тайну космических ускорителей частиц
Космос
Илон Маск: Neuralink поставил мозговой имплант третьему пациенту
Новости
В Китае дроны вызвали снегопад в горах, чтобы решить проблему с недостатком воды
Новости
«Сестра Клеопатры» оказалась римским больным подростком
Наука
2024 год стал самым жарким за полтора века: впервые превышен предел в 1,5°С
Наука