Сообщить об ошибке на сайте
URL
Ошибка
Тренды

В 2018 году рейтинговое агентство CB Insights включило американскую компанию с русскими основателями — Insilico Medicine — в топ-100 бизнесов, занимающихся искусственным интеллектом. В компании уверены, что старение — это болезнь, которую можно лечить на молекулярном уровне, с помощью машин. CEO компании Алекс Жаворонков работал в ATI Technologies, которая делает компьютерную графику. В 2006 компанию приобрела AMD. Тогда, заработав денег, Алекс решил посвятить себя биотеху и индустрии долголетия. Ученый рассказывает, зачем вообще людям стремиться к долголетию и как современные технологии помогут в этом.


Insilico Medicine

Компания основана в США в 2014 году. Главный исследовательский центр компании находится в американском университете Джона Хопкинса. Используя искусственный интеллект с глубоким обучением, Insilico Medicine исследует старение, молекулярную природу заболеваний и разрабатывает новые лекарства.

Нейросеть, созданная Insilico Medicine, учится предсказывать результаты клинических испытаний новых препаратов, тем самым помогая фармацевтическим компаниям экономить.

Алекс Жаворонков, CEO

Ученый, работающий в области биотехнологий, регенеративной медицины и экономики старения. Директор Biogerontology Research Foundation — аналитического центра из Великобритании, изучающего старение. Руководитель International Aging Research Portfolio — репозитория биомедицинских грантов в открытом доступе. Заведует лабораторией биоинформатики ФНКЦ ДГОИ; приглашенный профессор Московского физико-технического института.

Как нейросети пришли в фармацевтику

Сейчас разработчиком искусственного интеллекта себя называет каждый дворник. Искусственный интеллект как область существует с 50-х годов. Но хайп пошел из-за прорыва в глубоком обучении. Это глубокие нейронные сети, которые работают по тем же принципам, что и человеческий мозг. Слои нейронов представлены алгоритмами, и они обучаются распознавать различные паттерны — в зависимости от рассматриваемых данных. Из этих паттернов уже можно выделять признаки.

Искусственный интеллект придумывает новые молекулярные структуры. Это биомаркеры старения на крови и генеративно-состязательные модели для создания новых лекарственных препаратов.

Стоимость разработки каждого нового препарата — более $2,6 млрд. И она растет, так как становится больше регуляции, 92% клинических испытаний заканчиваются провалом, а все слишком простые молекулы народ уже пустил в аптеки.

Фармкомпании не любят рисковать и стараются выпускать препараты, которые уже где-то известны: они стараются их перепозиционировать. Они пробуют уже опробованное в другом заболевании, и очень часто из-за этого тоже возникают провалы.

Фармацевтика — самая неэффективная индустрия.

Фарминдустрия не любит делиться данными. Но в США законодательно закреплено, что результаты исследований, проведенных на государственные средства, должны публиковаться в открытом доступе.

Мы собираемся изменить фармацевтическую индустрию: построить модель бизнеса, в которой будет возможно финансировать наши глобальные цели. То есть, мы идем сначала за данными и за деньгами, трансформируя фармацевтическую индустрию. И учимся заодно.

Если мы сможем доказать, что искусственный интеллект работает идеально, мы сможем уйти от клинических испытаний. Это моя мечта на следующие 10 лет.

Зачем роботы нюхают людей

Бороться со старением нужно, потому что если продлить здоровую жизнь каждому человеку на земле на один год, можно сгенерировать 7,5 млрд лет жизни. Есть такая мера измерения, называется QALY — quality-adjusted life year. Это год здоровой жизни. Этим показателем измеряется экономика здравоохранения: смотрят, сколько нужно денег, чтобы добавить человеку один QALY к жизни.

Старение начали рассматривать как болезнь. Нет двух одинаковых пациентов. У них разные биомаркеры и по-разному протекают заболевания. Например, если мы посмотрим на саркому двух пациентов, то экспрессия генов у них будет разная. И даже диагноз будет отличаться. Поэтому появилась персонифицированная медицина, когда лекарства разрабатываются под конкретного пациента и его особенности.

Искусственный интеллект выделил, какие молекулы определяют старение. Мы привязали огромный массив данных к возрасту и научили нейросеть определять возраст человека по самым разным параметрам — в основном, по транскриптомным, протеомным данным (данным на основе РНК и белковых структур соответственно, прим. Хайтек) и данным анализов крови. Затем мы отделили маркеры, которые связаны со старением, от маркеров заболевания. Таким образом у нас получились гораздо более чистые данные, которые очень нравятся фарме. Мы научились выделять молекулярные мишени старения.

Наш ИИ нюхает людей электронным носом: пытается распознавать их возраст и делает это лучше живых людей. Наша задача — определять возраст, используя любые типы данных: фотографию, кровь, экг. Это называется young.ai. Естественный интеллект может распознавать возраст человека по запаху, но искусственный интеллект умеет это еще лучше. Запах меняется, потому что у нас увеличивается общая площадь кожи и меняется состав микробиоты.

Как ИИ помогает создавать лекарства

Можно генерировать идеальные молекулы с помощью искусственного интеллекта. Чтобы получить хороший препарат, нужно знать молекулярную мишень. Представьте: чтобы выключить какой-то патологический процесс, вам нужно выбрать и нажать одну из 20 тыс. кнопок. Нужно найти идеальную молекулу, которая эту кнопку нажмет, свяжется с белком и одновременно будет безопасной.

У нас есть искусственный интеллект, который предсказывает исход клинического испытания. Ему помогают созданные нами «треугольники»: заболевание-мишень-молекула. Но эта штука еще не слишком хорошо работает.

В нейросети можно прописать, что молодая ткань — это норма, а более старая — это уже заболевание, и посмотреть, какие молекулы могут повернуть вспять процессы, связанные со старением. Мы используем глубокое обучение, чтобы искать новые молекулярные структуры для уже известных мишеней: конструируем характеристику заболевания, сравнивая здоровые ткани с больными, а после этого используем знания о молекулах и смотрим, какие из них могут влиять на какие мишени и изменять их. Можно одинаково изучать и рак, и старение.

Нейросеть способна взять много миллионов молекул, упаковать их и восстановить на другом конце в идеальном состоянии. А в скрытых слоях нейронной сети мы добавляем молекулам новые признаки, которых у них раньше не было. Так можно убивать раковые клетки. Мы начали синтезировать эти молекулы и отправлять в Китай нашим партнерам, которые их тестировали.

Возможности искусственного интеллекта нужно тестировать на людях. Поэтому мы начали работать с различными компаниями, которые могут выводить продукты на рынок быстрее, чем фарма, — например косметика, различные биодобавки и т. д. Мы начали работать с компанией Life Extension. В США 400 тыс. человек постоянно пользуются их продуктами. Это не просто витамины с полки в 7-Eleven — у них очень серьезная исследовательская группа, они предлагают всем своим клиентам сдавать анализы крови.

Прорывы индустрии борьбы со старением за последние пять лет уже не кажутся шарлатанством. Люди поверили в метформин, потому что сейчас его начали серьезно исследовать. И молекулы, похожие на рапамицин, — их тоже много на различных стадиях исследования.

Загрузка...
Подписывайтесь на наши каналы в Telegram

«Хайтек» - новости онлайн по мере их появления

«Хайтек» Daily - подборки новостей 3 раза в день

Колонизация отменяется: почему терраформирование невозможно на Марсе
Тренды
Сет Стивенс-Давидовиц: у людей гораздо больше непристойных и скверных мыслей, чем мы думали
Мнения
Умные города подвергают своих жителей опасности из-за датчиков освещения и радиации
Тренды
Биоценоз в фарме: зачем нужна альтернатива антибиотикам и как работают лекарства нового поколения
Тренды
Мнения
Геронтолог Обри ди Грей: жизнь длиной в тысячу лет — это побочный эффект поиска вечного здоровья
Чарльз Адлер, co-founder Kickstarter: я — панк-рокер, который раздвигает границы
Кейсы
Как ИИ меняет медицину: личный помощник для врачей, маршрутизатор в клиниках и разработчик лекарств
Кейсы
Эдвин Диндер, Huawei Technologies: умный город — это ничто
Мнения
«Если изобретение с ИИ не приносит пользу, сам продукт никому не нужен»
Мнения
Feature engineering: шесть шагов для создания успешной модели машинного обучения
Тренды
Карло Ратти, Senseable City Laboratory (MIT) — о городах будущего, третьей коже человека и роболодках
Тренды
Мнения
Человек — это набор из пяти чисел: Игорь Волжанин, DataSine — о психотипировании с помощью big data
Мы все — сенсоры: CEO SQream Ами Галь — о том, как обрабатывают big data
Кейсы
Что такое скрапинг: как Amazon, Walmart и другие ритейлеры используют ботов в борьбе с конкурентами
Идеи
Почему китайские подлодки-беспилотники станут самым опасным врагом под водой?
Идеи
Филипп Роуд, LSE Cities: самый кошмарный сценарий — беспилотники, ездящие по городу, чтобы не платить за парковку
Мнения
Юрий Корженевский — о том, как построить безопасные системы для банков на блокчейне
Блокчейн
MyGenetics: ДНК-тесты, помогающие «взломать» организм, как компьютер
Тренды
Иннополис
Russian Robot Olympiad: как дети строят роботов и решают реальные инженерные проблемы
Trade-to-Mine: как биржи привлекают трейдеров в условиях падения рынка
Блокчейн
Дмитрий Фадин, 3D Bioprinting Solutions — о будущем биопринтинга и печати органов в космосе
Мнения
IoT изменит все: какие умные технологии принесут бизнесу экономию, безопасность и инновации
Тренды
Как высокие технологии побуждают нас покупать билеты и туристические услуги
Тренды
Чем плоха Кремниевая долина для IT-стартапов из России: дорого, неудобно и нет транспорта
Мнения
Жить по-умному: как защитить свой дом и не бояться киберугроз
Умный дом
Андрей Синогейкин, Wonder Technologies, — об искусственных алмазах
Тренды
Никита Бокарев, ESforce, — о деньгах, киберспорте и его немаргинальности
Тренды
Тренды
YouTube-депрессия: как создатели популярных каналов боятся потерять подписчиков и разум
Гельмут Райзингер, Orange Business Services, — об IIoT, 5G и телеком-стартапах
Мнения
«Робот берет вас на работу»: как искусственный интеллект, блокчейн и VR подбирают персонал
Мнения
Телемедицина, роботы и умные дома: каким через 5 лет будет «оцифрованный» город в России
Тренды
Мясная революция: как перейти от веганских заменителей к клеточным технологиям и биореакторам
Идеи
AI-выборы: как искусственный интеллект и голосовые помощники сделают демократию лучше
Тренды
Идеи
Тупик для беспилотников: как мечты разработчиков разбиваются о неожиданности на дорогах
Здесь нужен InsurTech: за какими стартапами будущее страхования
Мнения
Идеи
Вирус лженауки в Google: как поисковые системы распространяют опасные мифы о прививках
«Кто-то управляет моим домом»: как жертв домашнего насилия терроризируют с помощью умных устройств
Умный дом
Паскаль Фуа, EPFL, — о ключевых точках, глубоких нейросетях и эпиполярной геометрии
Мнения
20 фильмов о кибербезопасности, взломах и цифровых преступлениях
Тренды
Ян Лекун, Facebook: прогностические модели мира — решающее достижение в ИИ
Мнения
Джианкарло Суччи: «Попытка спроектировать программу без багов — утопия»
Иннополис
Game out: Как видеоигры обучают детей-аутистов держать равновесие и узнавать людей
Тренды
Прослушка, контроль камеры и предсказание смерти пользователя: самые странные патенты Facebook
Кейсы
Цес Снук, QUVA: мы не хотим зависеть от крупных компаний, которые владеют всеми данными
Мнения
Дмитрий Песков, АСИ: «В России традиционно долго запрягают, и в сфере IT мы только этим и занимаемся»
Иннополис
ДНК-тесты: как генетические компании обманывают людей и разрушают семьи
Мнения
Мануэль Маццара: «Для Facebook вы не покупатель, вы — продукт»
Иннополис
Тренды
Блокчейн, искусственное мясо и «смерть» смартфонов: что будет с технологиями через 10 лет
Витторио Феррари, Google: «Чтобы машина распознала книгу о Гарри Поттере нужна сложная математическая модель»
Мнения