Алекс Жаворонков, Insilico Medicine: Как нейросети создают пилюлю от старения

В 2018 году рейтинговое агентство CB Insights включило американскую компанию с русскими основателями — Insilico Medicine — в топ-100 бизнесов, занимающихся искусственным интеллектом. В компании уверены, что старение — это болезнь, которую можно лечить на молекулярном уровне, с помощью машин. CEO компании Алекс Жаворонков работал в ATI Technologies, которая делает компьютерную графику. В 2006 компанию приобрела AMD. Тогда, заработав денег, Алекс решил посвятить себя биотеху и индустрии долголетия. Ученый рассказывает, зачем вообще людям стремиться к долголетию и как современные технологии помогут в этом.

Insilico Medicine

Компания основана в США в 2014 году. Главный исследовательский центр компании находится в американском университете Джона Хопкинса. Используя искусственный интеллект с глубоким обучением, Insilico Medicine исследует старение, молекулярную природу заболеваний и разрабатывает новые лекарства.

Нейросеть, созданная Insilico Medicine, учится предсказывать результаты клинических испытаний новых препаратов, тем самым помогая фармацевтическим компаниям экономить.

Алекс Жаворонков, CEO

Ученый, работающий в области биотехнологий, регенеративной медицины и экономики старения. Директор Biogerontology Research Foundation — аналитического центра из Великобритании, изучающего старение. Руководитель International Aging Research Portfolio — репозитория биомедицинских грантов в открытом доступе. Заведует лабораторией биоинформатики ФНКЦ ДГОИ; приглашенный профессор Московского физико-технического института.

Как нейросети пришли в фармацевтику

Сейчас разработчиком искусственного интеллекта себя называет каждый дворник. Искусственный интеллект как область существует с 50-х годов. Но хайп пошел из-за прорыва в глубоком обучении. Это глубокие нейронные сети, которые работают по тем же принципам, что и человеческий мозг. Слои нейронов представлены алгоритмами, и они обучаются распознавать различные паттерны — в зависимости от рассматриваемых данных. Из этих паттернов уже можно выделять признаки.

Искусственный интеллект придумывает новые молекулярные структуры. Это биомаркеры старения на крови и генеративно-состязательные модели для создания новых лекарственных препаратов.

Стоимость разработки каждого нового препарата — более $2,6 млрд. И она растет, так как становится больше регуляции, 92% клинических испытаний заканчиваются провалом, а все слишком простые молекулы народ уже пустил в аптеки.

Фармкомпании не любят рисковать и стараются выпускать препараты, которые уже где-то известны: они стараются их перепозиционировать. Они пробуют уже опробованное в другом заболевании, и очень часто из-за этого тоже возникают провалы.

Фармацевтика — самая неэффективная индустрия.

Фарминдустрия не любит делиться данными. Но в США законодательно закреплено, что результаты исследований, проведенных на государственные средства, должны публиковаться в открытом доступе.

Мы собираемся изменить фармацевтическую индустрию: построить модель бизнеса, в которой будет возможно финансировать наши глобальные цели. То есть, мы идем сначала за данными и за деньгами, трансформируя фармацевтическую индустрию. И учимся заодно.

Если мы сможем доказать, что искусственный интеллект работает идеально, мы сможем уйти от клинических испытаний. Это моя мечта на следующие 10 лет.

Зачем роботы нюхают людей

Бороться со старением нужно, потому что если продлить здоровую жизнь каждому человеку на земле на один год, можно сгенерировать 7,5 млрд лет жизни. Есть такая мера измерения, называется QALY — quality-adjusted life year. Это год здоровой жизни. Этим показателем измеряется экономика здравоохранения: смотрят, сколько нужно денег, чтобы добавить человеку один QALY к жизни.

Старение начали рассматривать как болезнь. Нет двух одинаковых пациентов. У них разные биомаркеры и по-разному протекают заболевания. Например, если мы посмотрим на саркому двух пациентов, то экспрессия генов у них будет разная. И даже диагноз будет отличаться. Поэтому появилась персонифицированная медицина, когда лекарства разрабатываются под конкретного пациента и его особенности.

Искусственный интеллект выделил, какие молекулы определяют старение. Мы привязали огромный массив данных к возрасту и научили нейросеть определять возраст человека по самым разным параметрам — в основном, по транскриптомным, протеомным данным (данным на основе РНК и белковых структур соответственно, прим. Хайтек) и данным анализов крови. Затем мы отделили маркеры, которые связаны со старением, от маркеров заболевания. Таким образом у нас получились гораздо более чистые данные, которые очень нравятся фарме. Мы научились выделять молекулярные мишени старения.

Наш ИИ нюхает людей электронным носом: пытается распознавать их возраст и делает это лучше живых людей. Наша задача — определять возраст, используя любые типы данных: фотографию, кровь, экг. Это называется young.ai. Естественный интеллект может распознавать возраст человека по запаху, но искусственный интеллект умеет это еще лучше. Запах меняется, потому что у нас увеличивается общая площадь кожи и меняется состав микробиоты.

Как ИИ помогает создавать лекарства

Можно генерировать идеальные молекулы с помощью искусственного интеллекта. Чтобы получить хороший препарат, нужно знать молекулярную мишень. Представьте: чтобы выключить какой-то патологический процесс, вам нужно выбрать и нажать одну из 20 тыс. кнопок. Нужно найти идеальную молекулу, которая эту кнопку нажмет, свяжется с белком и одновременно будет безопасной.

У нас есть искусственный интеллект, который предсказывает исход клинического испытания. Ему помогают созданные нами «треугольники»: заболевание-мишень-молекула. Но эта штука еще не слишком хорошо работает.

В нейросети можно прописать, что молодая ткань — это норма, а более старая — это уже заболевание, и посмотреть, какие молекулы могут повернуть вспять процессы, связанные со старением. Мы используем глубокое обучение, чтобы искать новые молекулярные структуры для уже известных мишеней: конструируем характеристику заболевания, сравнивая здоровые ткани с больными, а после этого используем знания о молекулах и смотрим, какие из них могут влиять на какие мишени и изменять их. Можно одинаково изучать и рак, и старение.

Нейросеть способна взять много миллионов молекул, упаковать их и восстановить на другом конце в идеальном состоянии. А в скрытых слоях нейронной сети мы добавляем молекулам новые признаки, которых у них раньше не было. Так можно убивать раковые клетки. Мы начали синтезировать эти молекулы и отправлять в Китай нашим партнерам, которые их тестировали.

Возможности искусственного интеллекта нужно тестировать на людях. Поэтому мы начали работать с различными компаниями, которые могут выводить продукты на рынок быстрее, чем фарма, — например косметика, различные биодобавки и т. д. Мы начали работать с компанией Life Extension. В США 400 тыс. человек постоянно пользуются их продуктами. Это не просто витамины с полки в 7-Eleven — у них очень серьезная исследовательская группа, они предлагают всем своим клиентам сдавать анализы крови.

Прорывы индустрии борьбы со старением за последние пять лет уже не кажутся шарлатанством. Люди поверили в метформин, потому что сейчас его начали серьезно исследовать. И молекулы, похожие на рапамицин, — их тоже много на различных стадиях исследования.

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
В MIT разработали беспроводные антенны для живых клеток
Наука
В Турции нашли место первой победы Александра Македонского над персами
Наука
Зрение муравьев вдохновило ученых на создание чипов для поиска раковых клеток
Новости
Древнюю реконструкцию Стоунхенджа связали с миграцией из Европы
Наука
В Нижнем Новгороде пациенту с эпилепсией поставили «нейростимулятор нового поколения»
Наука
OpenAI: новая модель GPT обошла в тестах большинство программистов планеты
Новости
Ток без шоу: лайфхаки при создании идеальной домашней электросети
Технологии
Ученые нашли ключ к неизвестной физике и пониманию темной материи
Космос
Северный магнитный полюс смещается к России: как это влияет на GPS
Наука
«Уэбб» нашел галактику, которую ученые не могут объяснить
Космос
Ученые нашли «инопланетное» растение: оно не связано ни с одним видом на Земле
Наука
НАСА показало космическую «елку» и «венок» к Рождеству  
Космос
Астероид с 10-этажный дом летит в сторону Земли
Космос
Квантовую телепортацию впервые совершили по обычному интернет-кабелю
Новости
Инженеры предложили технологию для зарядки смартфона в кармане
Новости
Неоднородное расширение Вселенной ставит под сомнение существование темной энергии
Космос
Российские физики создали усилитель для оптоволоконных сетей
Новости
«Джеймс Уэбб» изучил ледяное прошлое ранней Солнечной системы
Космос
В России доказали безопасность транспортировки плазмы крови дронами
Иннополис
Ученые нашли практически безграничный источник топлива
Наука