«Технологий много хороших, но не все умеют их коммерциализировать»
— Что поменялось за последние годы в сфере стартапов?
— Стали больше покупать и меньше выходить на IPO. То есть основной формой экзита стал M&A (слияния и поглощения — «Хайтек»), а не IPO. Большие компании стали больше покупать стартапы.
— То есть люди, создающие стартапы сейчас, делают это в основном для продажи?
— Их всегда создают с целью продажи, просто сейчас их покупают на более ранних стадиях, потому что большим компаниям надо двигаться все быстрее — и они делают такие предложения, от которых невозможно отказаться.
— Ваши компании в основном находятся в Америке?
— Они везде размазаны по миру. В России находится R&D, продакт — где-нибудь еще. По понятным причинам.
— При этом вы состоите в экспертном совете и являетесь ментором «Сколково». Что посоветуете молодым предпринимателям — есть ли сейчас вообще перспективы у стартапов в России?
— Перспективы у стартапов есть везде — если они понимают, что и для кого делают. Что такое предприниматель? Это человек, решающий достаточно серьезные проблемы людей в надежде на то, что они за это заплатят.
Роман Нестер, Segmento: я верю корпорациям больше, чем маленьким компаниям
Кейсы
А дальше вопрос — сколько этих людей есть и сколько они готовы платить? Потому что если решить проблему пяти человек, готовых нам дать по миллиону каждый, это все равно, что мы решим проблему 5 тыс. человек по тысяче рублей. Дальше — вопрос бизнес-модели и всего остального. Поэтому если понимать, что и для кого ты делаешь и сколько денег тебе за это заплатят, то можно делать где угодно и что угодно.
— Какие проекты вы сейчас ведете в «Сколково»? В чем их потенциал?
— Все, что связано с анализом данных (естественным путем, машинным обучением и так далее), имеет некий потенциал. Дальше надо смотреть, что является разумным и имеет не только технологическое зерно, а именно почву для бизнеса. Потому что технологий много хороших и разных, но не все умеют их коммерциализировать. И не все понимают вообще, для кого это делают.
— В этой нише еще есть свободные места? За последние годы появилось очень много компаний, занимающихся анализом данных.
— Помните интернетовский бум в начале 2000-х? Вот сейчас примерно такой же бум. Мест там очень много, вопрос — кто выживет. Рынок огромный, потому что он фактически изменяет всю индустрию. Как интернет изменил весь мир, так же сейчас все меняется в плане поставтоматизации. Мы переходим с автоматических систем на умные. И это меняет всю индустрию, поэтому места очень много.
— Вы это сравнили с интернетом — думаете нас ждет такой же крах доткомов, крах компаний big data?
— Мы только что видели такой же крах блокчейн-компаний. Это неизбежно, когда рынок перегрет, там очень много шальных и необоснованных денег. И в какой-то момент должна произойти коррекция.
— Сейчас рынок уже перегрет?
— Еще нет, но все туда идет.
— Через сколько вы ожидаете этого краха?
— Это все равно, что ткнуть пальцем в небо.
— Невозможно предсказать?
— Это можно предсказать, если этим заниматься, но я не занимался.
Запрыгнуть на поезд больших данных
— Чем занимается Global Innovation Labs?
— Мы консультируем, как, зачем и почему считать данные и что с этим делать. Второе направление — мы учим тех, кто на местах будет это применять. То есть мы учим CDO, обучаем менеджера общаться с дата-сайентистами и их самих, представляем CDO как сервис.
— В GIL занимаетесь большими данными, не привязанными к какой-то конкретной индустрии?
— Мы — как консалтинг: знаем, что умеем считать, и можем это адаптировать для достаточно большого спектра индустрий. То есть вещи, которые мы считать не умеем, просто не трогаем, независимо от индустрии.
Человек — это набор из пяти чисел: Игорь Волжанин, DataSine — о психотипировании с помощью big data
Мнения
— Это что, например?
— Например, мы сейчас только учимся предсказывать инфаркт миокарда. То есть не умеем это коммерчески делать. Для себя учимся, это наш внутренний проект, за который никто не платит. Если научимся — тогда будем что-то делать.
— Многие компании на рынке анализа данных делают только конкретные продукты — для банковской индустрии, для ритейла, медицины. Насколько сложно быть такой общей компанией, когда нет специальной ниши?
— Мы скорее сравниваем себя с кем-то вроде YDF (Yandex Data Factory — «Хайтек»), BCG (The Boston Consulting Group — «Хайтек»). То есть мы — бутиковый консалтинг, обладающий довольно неплохой экспертизой в data science.
— Кто ваши клиенты?
— Клиенты у нас разные, начиная от ритейла, банков, телекома и заканчивая металлургами или транспортниками.
— Сейчас, по вашему ощущению, все пытаются запрыгнуть на уходящий поезд больших данных?
— Нет, вопрос не в том, чтобы запрыгнуть. Мир движется с той скоростью, что если этого не делать, то можно отстать навсегда. То есть это просто необходимость. Это не то, что они хотят и могут — делать или не делать, не желание, мода или что-то еще. Вопрос в том, что скорость изменения мира не оставляет альтернативы. Закон Мура помните? Примерно то же самое происходит во всем остальном. Время от создания компании или нового продукта до миллиардного оборота уменьшилось с 20–30 лет до пяти-семи сейчас. Соответственно, надо очень быстро все делать. И мы помогаем быстрее делать то, что компании внутри, in-house, делали бы пять лет. Мы это делаем за полгода.
— Вы используете большие данные для предсказаний. Сейчас такие преимущества есть далеко не у всех участников рынка. Что будет, когда это станет нормой для всех?
— Биржу представляете себе? Алгоритмический трейдинг делают все. Соответственно, время жизни модели — дни, часы, минуты. Дальше надо менять модель. Чем больше компаний и игроков, тем меньше будет время жизни модели, тем быстрее рынок будет корректировать себя, тем больше будет скорость изменений, тем больше будет требований.
— Если говорить про запросы аудитории — они тоже будут меняться намного быстрее? Время жизни продукта просто сильно уменьшится?
— Да. То, что мы видим сейчас — аналитический продукт, то есть любая модель, сделанная для ритейла, живет три-шесть месяцев, после чего она устаревает. И ее надо менять как-то, потому что рынок адаптируется к новым условиям. Соответственно, чем дальше — тем быстрее он будет адаптироваться. Еще назову одну цифру, чтобы было понятно. Есть такой ритейлер Walmart, вот там сидят более тысячи дата-сайентистов, которые все это считают.
Черная магия открытых данных
— Насколько точные прогнозы для бизнеса можно сделать с использованием только открытых данных?
— Если мы говорим про эти предсказания — для большинства индустрий достаточно открытых данных. По крайней мере, с точки зрения направления и тренда это определяется. Трудно назвать точную формулу чего бы то ни было, но это и не наша задача. Скажем, что, грубо говоря, если смешать серу, магний и толченую известь с ушами лягушки, взятыми в полнолуние, философский камень точно получится. Но в каких пропорциях, мы не знаем. Вот это примерно то, что мы делаем.
— Допустим, мы делаем предсказание и отдельно анализируем твиты, отзывы и патенты. Насколько предсказания, основанные на твитах, будут отличаться от предсказаний, основанных на патентах?
— Не знаю. Так вопрос не стоял никогда. Я не буду говорить, что мы берем и куда, но мы делаем некую комбинацию. В презентации на конференции я показывал отдельно пиар-тренды и отдельно патентные тренды компании Apple. Одно — то, как мы хотим выглядеть, другое — то, что мы делаем. Оно не всегда совпадает. Дальше — вопрос: почему и что.
Мы все — сенсоры: CEO SQream Ами Галь — о том, как обрабатывают big data
Кейсы
— А почему?
— А это черная магия. Это надо смотреть каждый случай отдельно.
— Если мы говорим про Apple.
— Есть отличие того, что мы хотим продавать, от того, что мы делаем на будущее, и от того, что мы делаем вообще и не хотим продавать. Простой пример: мы, как компания Apple, хотим, чтобы у нас были самые хорошие батарейки, самые быстрые процессоры и так далее. Мы для этого что-то делаем. Но совершенно не хотим это пиарить, потому что не продаем батарейки.
— То есть они пиарят только конечные продукты?
— Ну, направления конечных продуктов. Медицина, дополненная реальность и автомобили.
— Кому полезно смотреть на направления этих гигантских компаний вроде Apple?
— Допустим, я — стартапер. И делаю очередную приблуду для виртуальной реальности. У меня есть задача — сделать что-то: а) востребованное на рынке, б) я не хочу потратить миллиарды на R&D и бюджет, с) а также хочу, чтобы меня кто-нибудь купил в конечном итоге. Соответственно, что я должен сделать? Посмотреть, куда движутся Apple, Google и кто-то еще. Что они делают, какая у них технологическая база. Чтобы туда прийти, я должен узнать, как сделать то, что они хотят, но быстрее, чем они, и за сколько я смогу тогда продаться.
— Возможно сделать быстрее, чем они?
— У меня нет ответа на этот вопрос, но в общем случае — да. Почему все большие компании покупают стартапы? Ответ очень простой — потому, что скорость изменения такая, что мы не можем in-house делать все технологии с той скоростью, с которой нам надо. Поэтому снаружи покупаем то, чего не хватает.
— Чего нам еще ожидать от больших данных?
— Да ничего хорошего. Большой брат будет чем дальше, тем больше смотреть. SkyNet — оно вот идет.
— Вы все-таки разделяете опасения по поводу нашего темного будущего?
— Нет, смотрите, у меня нет никаких опасений. Я четко понимаю, что приватность — это прерогатива XX века. В XXI веке — ее нет и не будет.
— Вообще?
— Совсем.
— Нам надо к этому привыкать?
— Просто надо с этим смириться. Или жить в лесу.
Благодарим за помощь в организации интервью компанию Global Innovation Labs, организатора Big Data Conference 2018.