24 декабря 2018

Как сегодня строят мосты: стеклопластик, машины-монстры и шок-трансмиттеры

За 3 тыс. лет с момента создания первого моста человечество неоднократно меняло подход к строительству жизненно важных переправ. Менялись материалы — от бетона к стеклопластику, расчеты — на сопротивление материалов и деформации сдвига, а также устройства для возведения — от простых башенных кранов до настоящий китайских «монстров» на рельсах. К 140-летию инженера и «отца» современного сопромата Степана Тимошенко «Хайтек» изучил новые технологии мостостроения и разобрался, почему новые технологии не спасают нас от катастроф, связанных с мостами.

23 декабря исполнилось 140 лет со дня рождения Степана Тимошенко — российского, украинского и американского механика, изучавшего сплошные среды и сопротивление материалов. Но главный вклад Тимошенко как ученого и инженера — теория устойчивости упругих систем — базис, на который до сих пор опираются современные строители при возведении мостов, сложных конструкций и железнодорожных путей. В строительной механике и сегодня используются термины «балка Тимошенко» или «плита Тимошенко», а его расчеты висячих мостов, рельсов и зубчатых колес по-прежнему актуальны.

Степан Тимошенко.

Теория балки была разработана Степаном Тимошенко в начале ХХ века. Модель учитывает эффекты деформации сдвига и вращательного изгиба, что делает ее пригодной для описания поведения толстых балок, многослойных композитных или подверженных высокочастотному возбуждению, когда длина волны приближается к толщине балки. Физически, принимая во внимание добавленные механизмы деформации, эффективно снижается жесткость балки, в то время как результатом является больший прогиб при статической нагрузке и более низкие прогнозируемые собственные частоты для заданного набора граничных условий. Последний эффект более заметен для высоких частот, поскольку длина волны становится короче, и, следовательно, расстояние между противодействующими сдвигающими силами уменьшается.


Человек всегда пытался преодолевать океаны, горы, пустыни. Это у нас в крови. Долгое время мосты представляли собой деревянные конструкции. Первый металлический мост был построен в Колбрукдейле, Великобритания, на реке Северн в 1779 году. В XIX веке появление железных дорог потребовало создания мостов, способных выдерживать значительные нагрузки, что стимулировало развитие мостостроения. Постепенно в качестве основных материалов в мостостроении утверждаются сталь и железо. В XX веке мосты стали строить также из железобетона.

Мост Миллениум. Фото: Wikimedia

Мостостроение по праву можно считать одной из самых консервативных отраслей строительства. Несмотря на то, что новшества в инженерии постоянно предлагаются как теоретиками, так и практиками, согласование и внедрение новых решений требует длительного времени. Тем не менее, сегодня все чаще применяются новые технологии строительства мостов, реализующие порой самые невероятные решения.

Меня поразили металлические конструкции дорог. Внешний вид их был безобразен. Конструкции поражали своей технической безграмотностью и были, по моему мнению, опасны для движения. При прохождении поездов и особенно при их торможении на станциях раскачивания этих конструкций достигали совершенно недопустимых пределов. О безграмотности американских инженеров я уже раньше составил себе некоторое представление, изучая провалившийся мост в Квебеке. Но все же не предполагал, что наземная железная дорога Нью-Йорка построена настолько безграмотно.

Степан Тимошенко

Бетон уходит в прошлое

Еще пару десятков лет назад основным строительным материалом при возведении мостов выступал прочный и долговечный бетон. Но при своих достоинствах он имел один существенный недостаток — тяжеловесность. Это нередко становилось камнем преткновения в ситуациях, когда требовалось с целью повышения судоходности моста увеличить пролеты между опорами.

Бетонный мост.

Сегодня достойную альтернативу ему составили современные материалы в комплексе с новейшими технологиями возведения мостов.

Сверхлегкий бетон

Вопрос создания прочных конструкций с широкими пролетами сегодня решается посредством применения новой технологии в строительстве мостов на основе легкого высококачественного бетона. Главное достоинство материала в том, что он позволяет снизить вес покрытия на 30% без ущерба прочности конструкции. Такой эффект достигается за счет использования пористых заполнителей.

Не менее востребован сегодня и наноструктурированный бетон. Наличие в консистенции цементного камня этих структур создает условия для микродисперсного самоармирования, повышая тем самым прочностные характеристики стройматериала.

Легкий бетон.

Современные материалы дают возможность ускорить процесс возведения мостов. Части конструкций создаются и собираются в условиях производства. А непосредственно на строительных участках осуществляют сваривание элементов металлоконструкции с последующим «обволакиванием» их бетонными массами. В процессе застывания они превращаются в фундаменты, опоры и пролеты, имеющие различные геометрические формы.

Нанокомпозитные материалы

Отдельное направление в мостостроении — создание конструкций из нанокомпозитов. Высокотехнологичные композитные элементы на основе нанокультур имеют превосходные эксплуатационные параметры.

На основе нанокомпозитов сегодня создается арматура, которая задействуется в виде усиливающих лент и бандажей, стальные элементы и сварные конструкции. Добавление в состав наночастиц молибдена и ванадия препятствует водородному охрупчиванию стали, снижая тем самым риск разрушения элементов.

Для увеличения вязкости сварных соединений используются присадки, включающие наночастицы кальция и магния. Они способны уменьшать размер зерен стали в точках формирования швов.

Стекло и стеклопластик

Внедрение новых технологий строительства мостов из стеклопластика и стекла стало революцией. Улучшение эксплуатационных параметров этих материалов не обошлось без применения все тех же нанотехнологий.

Все чаще можно наблюдать ситуации, когда стеклопластиком при строительстве мостов заменяют часть металлических изделий. В 2014 году в Новосибирске был построен первый в России стеклопластиковый автомобильный мост.

Стеклопластиковый мост в Новосибирске. Фото: Пресс-служба губернатора и правительства Новосибирской области/Сергей Пермин.

Плюсов у стеклопластиковых мостов очень много — не обязательно транспортировать крупногабаритные пролетные строения, часть конструкций собирается непосредственно на месте стройки. Второе — материал не подвергается коррозии и, соответственно, меньше затрат при эксплуатации в дальнейшем. Стеклопластик характеризуется высокой надежностью работы в склонных к коррозии средах — 50 лет без разрушений. Это является мощным поводом предполагать, что срок службы стеклопластиковых настилов будет достигать 75–100 лет. В-третьих, вес стеклопластикового настила составляет всего 10–20% от веса аналогичного железобетонного покрытия. Использование стеклопластикового настила взамен бетонного в значительной степени снижает нагрузку на мост. В новой конструкции более низкий собственный вес обеспечивает снижение веса всей конструкции, ведь размер структурных элементов и основания тоже уменьшается.

Самый длинный мост в России

Уникальным сооружением для России стал Крымский мост, общая длина которого составляет 19 км. Он является самым длинным мостом в России на данный момент. Строительство велось одновременно сразу с восьми точек. Длина морских участков от косы Тузлы до острова Тузла (там 6,5 км суши) и от острова до Керчи составит 13 км. Для строительства моста использовались 595 опор и более 5,5 тыс. свай разных размеров и типов — трубчатых, призматических и буронабивных. При этом трубчатые сваи забивались как вертикально, так и под углом на участках с наиболее сложной геологией и высокой сейсмикой. В акватории такие сваи погружены на глубину, превышающую 90 м, равную высоте 30-этажного здания.

Крымский мост. Фото: Сергей Мальгавко/ТАСС

На строительство Крымского моста, признанного одним из самых сложных инженерных сооружений в отечественной инженерной практике, ушло более 270 тыс. т металла и около 0,5 млн куб. м бетона. В целом объем поставок материалов и конструкций для реализации проекта превысил 12,5 млн т.

При установке арки автомобильного пролета были задействованы 600-тонные домкраты. Все конструкционные материалы обладают повышенными характеристиками прочности и противокоррозионной защиты. Специальное исполнение опорных частей обладает также с защитой от пыли, морской воды, воздействий обледенения и сильного ветра. Шок-трансмиттеры — еще одна уникальная технология, примененная при строительстве объекта. Так как мост находится в неустойчивой сейсмозоне, то на его автодорожной части установлены 760 устройств, которые дополнительно защищают мостовые конструкции в случае землетрясения. Конструкторы заверяют, что с ними Крымский мост выдержит даже девятибалльное землетрясение.


Шок-трансмиттеры устанавливают между опорами и пролетами моста. Благодаря гидравлике они обеспечивают жесткое соединение конструкций в случае кратковременных воздействий, вызванных сейсмической или другой динамической нагрузкой (их можно сравнить с ремнями безопасности в автомобиле). Шок-трансмиттеры позволяют пролетам моста беспрепятственно смещаться при незаметных перемещениях, вызванных температурными условиями, а при землетрясении они срабатывают и распределяют сейсмическую нагрузку равномерно по опорам.


Машина-монстр для возведения мостов

Китайские инженеры создали мостоукладчик, предназначенный для возведения протяженных мостов, в конструкции которых предусмотрено множество пролетов. С его помощью в кратчайшие сроки можно создавать пути на сложных участках местности, образуя при этом минимальное количество стыков на дорожном полотне.

Чудо-техника носит название SLJ900/32 Segmental Bridge Launching Machine. Цифра 900 (тонн) указывает на максимально допустимый вес одного сегмента, который может уложить агрегат.

Задача строителей сводится к тому, чтобы возвести опоры. Всю остальную работу, включая установку и фиксацию готовых участков полотна моста, агрегат выполнит сам.

Софт для мостов

Современное мостостроение невозможно представить без использования программ, помогающих инженерам-проектировщикам грамотно рассчитать возможную предельную нагрузку моста, коррозию и резонанс. Прежде чем проектировать мост, учитывают множество разных факторов и проводят обязательные работы — исследуют уже существующие мосты, определяют предельную грузоподъемность каждой детали мостовой конструкции, а также каждого пролета, осуществляют инженерно-геологические, инженерно-экологические и прочие исследования, составляют рекомендации для дальнейшей эксплуатации моста. С учетом системы будущего моста вычисляют его динамические характеристики — учитывают грузоподъемность, а также влияние отдельных дефектов на его пропускную способность.

Расчет характеристик моста в RSTAB.

Цена ошибки

Человечество стало строить мосты более 3 тыс. лет назад, что позволяет им претендовать на почетное звание самого древнего инженерного сооружения. Более того, многие мосты, построенные тысячи лет назад, — особенно римлянами, которые достигли удивительных высот в области мостостроения, — до сих пор стоят и даже выполняют свои функции.

Но, как и любое инженерное сооружение, мост может разрушиться, что нередко случалось за последние 3 тыс. лет. И хорошо еще, если прямо в процессе строительства. Хуже, если это происходит при эксплуатации.

Почему же разрушаются мосты? Часто причин может быть несколько одновременно, и они, дополняя друг друга, приводят к катастрофе. Например, инженер неправильно провел расчеты, строители сэкономили на материалах или нарушили технологии строительства, затем мост неправильно эксплуатировался и, в конце концов, при прохождении слишком тяжело нагруженного поезда или большого числа машин обрушился. Тем не менее, в большинстве случаев одна из причин выступает в качестве основной.

Ошибки конструкции и эксплуатации и чрезмерный износ

14 августа 2018 года обрушился автомобильный мост в Генуе, жертвами катастрофы по последним данным стали 42 человека.

Обрушившийся в Генуе мост.

Правительство Италии обвинило в катастрофе обслуживающую мост компанию Autostrade. Но расследование NYT выявило, что при строительстве моста были допущены ошибки на этапе проектировки. Стальные кабели внутри моста были забетонированы, что мешало контролировать коррозию металла и предпринимать соответствующие меры по ее устранению. А бетонная оболочка оказалась очень уязвимой для соленого воздуха Средиземного моря и ядовитых испарений с близлежащих заводов. Трещины в бетонной оболочке пропускают воду, и стмаль начала коррозировать почти сразу, как только мост был открыт для движения в 1967 году. Инженер моста Рикардо Моранди отметил пугающие изменения еще в начале 80-х, но был проведен лишь небольшой косметический ремонт сооружения. В 2017 году приглашенный Autostrade профессор Джентиле по вибрациям выявил опасные разрушения двух опорных башен и предположил, что стальные кабели находятся на предельной нагрузке. Но никаких действий управляющая компания не предприняла. В результате 43 человека погибли, десятки автомобилей упали примерно в 150 футах на русло реки, железнодорожные пути и улицы вниз.

Резонанс

Одна из самых известных причин разрушения мостов — это резонанс, то есть явление резкого нарастания амплитуды колебаний системы (в нашем случае — конструкции моста) при периодическом внешнем воздействии. В школе это явление даже объясняют на уроках физики, приводя в пример историю о том, как отряд солдат, шагая в ногу, может вызвать обрушение моста. По сути, тут можно выделить даже две причины: ошибки в конструкции и неправильная эксплуатация; порой может подключаться и плохая погода.

20 мая 2010 года русловые пролеты балочного моста через Волгу в Волгограде начали испытывать колебания с амплитудой до 40 см, которые затрудняли и даже делали невозможным движение. Волнообразные колебания происходили только в судоходных пролетах моста длиной 155 м, имеющих малую относительную жесткость, в более коротких же пролетах таких явлений не наблюдалось. Вследствие этого движение было закрыто, к исследованию явления подключились специалисты по проектированию и строительству мостовых сооружений. По предварительным данным, имеющийся мировой опыт мостостроения свидетельствовал о том, что балочные мосты обычно не испытывали таких колебаний.

Превышение допустимой нагрузки

Часть моста через реку Скагит в штате Вашингтон обрушилась в 2013 году после того, как по ней проехал перегруженный грузовик из Ванкувера. Из-за аварии в реку упали два автомобиля, но в итоге никто серьезно не пострадал.

Фото: Wikimedia

В 2007 году мост автомагистрали I-35W через реку Миссисипи рухнул в час пик. Это был один из самых используемых мостов Миннесоты, который каждый день пересекало около 140 тыс. машин. В результате катастрофы погибло 13 человек, 145 получили ранения.

Мосты являются неотъемлемой частью внешнего облика красивейших городов мира, соединяют берега рек и даже проливов, помогая людям быстрее добраться до родных и близких. В задачу инженеров, проектировщиков и строителей входит не только создание безопасных и запоминающихся переправ, но и применение современных технологий, чтобы с их помощью сделать мосты устойчивыми к природным катаклизмам, дешевыми с точки зрения возведения и эксплуатации, а также чтобы обезопасить себя от ошибок, которые могут привести к человеческим жертвам и огромному материальному ущербу.