;
Кейсы 10 июля 2019

Самые мощные взрывчатые неядерные вещества: гексоген, ТЭН и «китайский разрушитель»

Далее

С тех пор, как изобрели порох, не прекращается мировая гонка за самую мощную взрывчатку. В основном взрывчатые вещества состоят из химических соединений или смесей горючих и кислородсодержащих веществ. Большинство последних представляют собой нитриты, нитраты, нитро- или нитрозосоединения, хлораты или перхлораты. При определенных воздействиях — будь то механическое напряжение (удар, трение), тепловое напряжение (искра, пламя, светящиеся предметы) или детонация — горючий компонент окисляется, и, тем самым, очень быстро выделяются тепло и горючие газы. Несмотря на появление ядерного оружия, взрывчатые вещества все еще используются как в мирных, так и в военных, и даже террористических целях. «Хайтек» разобрался, что из себя представляет взрывчатка сегодня и чем нам это грозит.

Ядерный век не отнял у химических взрывчатых веществ пальмы первенства по частоте использования, широте применения — от армии до добычи нефти, а также удобству хранения и транспортировке. Их можно перевозить в пластиковых пакетах, прятать в обычные компьютеры и даже закапывать просто в землю без какой-либо упаковки с гарантией того, что детонация все-таки произойдет. К сожалению, до сих пор большинство армий на Земле использует взрывчатые вещества против человека, а террористические организации — для нанесения ударов против государства. Тем не менее, источником и заказчиком химических разработок остаются министерства обороны.

Гексоген

Гексоген — это бризантное взрывчатое вещество на основе нитрамина. Его нормальное агрегатное состояние — мелкокристаллическое вещество белого цвета без вкуса и запаха. В воде не растворяется, негигроскопичен и неагрессивен. Гексоген не вступает в химическую реакцию с металлами и плохо прессуется. Для взрыва гексогена достаточно одного сильного удара или прострела пулей, в таком случае он начинает гореть белым ярким пламенем с характерным шипением. Горение переходит в детонацию. Второе название гексогена — RDX, Research Department eXplosive — взрывчатка отдела исследований.


Бризантные взрывчатые вещества — это такие вещества, у которых скорость взрывчатого разложения достаточно велика и достигает нескольких тысяч метров в секунду (до 9 тыс. м/с), вследствие чего они обладают дробяще-раскалывающей способностью. Преимущественным видом взрывчатых превращений их является детонация. Они широко применяются для снаряжения снарядов, мин, торпед и различных подрывных средств.


Гексоген получают путем нитролиза гексамина азотной кислотой. В ходе получения гексогена методом Бахмана гексамин реагирует с азотной кислотой, нитратом аммония, ледяной уксусной кислотой и уксусным ангидридом. Сырье состоит из гексамина и 98-99-процентной азотной кислоты. Однако эта сложная экзотермическая реакция не полностью контролируема, поэтому конечный результат не всегда предсказуем.

Производство гексогена достигло пика в 1960-х годах, когда оно было третьим по объему производства взрывчатых веществ в США. Средний объем производства гексогена с 1969 по 1971 год составлял около 7 т в месяц.

Текущее производство гексогена в США ограничено военным использованием на Военном заводе по производству боеприпасов Holston в Кингспорте, штат Теннесси. В 2006 году на заводе армейских боеприпасов в Холстоне было произведено свыше 3 т гексогена.

Молекула гексогена

RDX имеет как военное, так и гражданское применение. В качестве военного взрывчатого вещества гексоген может использоваться отдельно в качестве основного заряда для детонаторов или в смеси с другим взрывчатым веществом, таким как тротил, с образованием циклотолов, которые создают взрывной заряд для воздушных бомб, мин и торпед. Гексоген в полтора раза мощнее тротила, и его легко активировать с помощью фульмината ртути. Обычное военное применение гексогена — в качестве ингредиента взрывчатых веществ на пластидовой связке, которые использовались для наполнения почти всех типов боеприпасов.

В прошлом побочные продукты военных взрывчатых веществ, таких как гексоген, открыто сжигались на многих армейских заводах по производству боеприпасов. Существуют письменные подтверждения того, что до 80% отходов боеприпасов и ракетного топлива за последние 50 лет были утилизированы именно так. Основным недостатком этого способа считается то, что взрывчатые загрязнители часто попадают в воздух, воду и почву. Боеприпасы с RDX также ранее утилизировались путем сброса в глубинные морские воды.

Октоген

Октоген — тоже бризантное взрывчатое вещество, но оно уже относится к группе взрывчатых веществ повышенной мощности. По американской номенклатуре обозначается как HMX. Существует много догадок относительно того, что означает аббревиатура: High Melting eXplosive — взрывчатка высокого плавления, или High-Speed ​​Military eXplosive — высокоскоростное военное взрывчатое вещество. Но подтверждающих эти догадки записей нет. Это могло быть просто кодовое слово.

Первоначально, в 1941 году, октоген был просто побочным продуктом при производстве гексогена методом Бахмана. Содержание октогена в таком гексогене достигает 10%. Незначительные количества октогена присутствуют так­же и в гексогене, полученном окислительным способом.

В 1961 году канадский химик Жан-Поль Пикард запатентовал метод получения октогена непосредственно из гексаметилентетрамина. Новый метод позволял получать взрывчатое вещество с концентрацией 85% с чистотой более 90%. Недостаток метода Пикарда состоит в том, что это многоступенчатый процесс — он занимает достаточно продолжительное время.

В 1964 году индийские химики разработали одностадийный процесс, тем самым значительно снизив стоимость октогена.

Октоген, в свою очередь, более стабилен, чем гексоген. Он воспламеняется при более высокой температуре — 335 °C вместо 260 °С — и обладает химической стабильностью тротила или пикриновой кислоты, к тому же, у него более высокая скорость детонации.

HMX используется там, где его высокая мощность превышает расходы на его приобретение — около $100 за килограмм. Например, в ракетных боеголовках меньший заряд более мощного взрывчатого вещества позволяет ракете двигаться быстрее или иметь большую дальность полета. Он также используется в кумулятивных зарядах для пробивания брони и преодоления заграждений из оборонительных сооружений, где менее мощное взрывчатое вещество может не справиться. Октоген в качестве бризантных зарядов наиболее широко применяется при проведении взрывных работ в особо глубоких нефтяных скважинах, где имеются высокие температуры и давление.

Октоген используют в качестве взрывчатого вещества при бурении особо глубоких нефтяных скважин

В России октоген применяют для проведения прострелочно-взрывных работ в глубинных скважинах. Его используют при изготовлении термостойкого пороха и в термостойких электродетонаторах ТЭД-200. Октоген используют также для снаряжения детонирующего шнура ДШТ-200.

Транспортируют октоген в водонепроницаемых мешках (резиновых, прорезиненных или пластиковых) в форме пастообразной смеси или в брикетах, содержащих не менее 10% жидкости, состоящей из 40% (весовых) изопропилового спирта и 60% воды.

Смесь октогена с тротилом (30 на 70% или 25 на 75%) называется октол. Другая смесь, называемая окфол, представляющая собой однородный рассыпчатый порошок от розового до малинового цвета, на 95% состоит из октогена, десенсибилизированного на 5% пластификатором, это влияет на то, что скорость детонации падает до 8 670 м/с.


Твердые десенсибилизированные взрывчатые вещества смочены водой или спиртами либо разбавлены другими веществами для подавления их взрывчатых свойств.

Жидкие десенсибилизированные взрывчатые вещества растворены или суспендированы в воде или других жидких веществах для образования однородной жидкой смеси с целью подавления их взрывчатых свойств.


Гидразин и астролит

Гидразин и его производные чрезвычайно токсичны по отношению к различным видам животных и растительных организмов. Получить гидразин можно в результате реакции раствора аммиака с гипохлоритом натрия. Раствор гипохлорита натрия больше известен как белизна. Разбавленные растворы сульфата гидразина губительно действуют на семена, морские водоросли, одноклеточные и простейшие организмы. У млекопитающих гидразин вызывает судороги. В животный организм гидразин и его производные могут проникать любыми путями: при вдыхании паров продукта, через кожу и пищеварительный тракт. Для человека степень токсичности гидразина не определена. Особо опасно то, что характерный запах ряда гидразинопроизводных ощущается лишь в первые минуты контакта с ними. В дальнейшем вследствие адаптации органов обоняния это ощущение исчезает и человек, не замечая того, может длительное время находиться в зараженной атмосфере, содержащей токсические концентрации названного вещества.

Изобретенный в 1960-х годах химиком Джеральдом Херстом в компании «Атлас Паудер» астролит представляет собой семейство бинарных взрывчатых веществ в жидком состоянии, которые образуются при смешивании нитрата аммония и безводного гидразина (ракетного топлива). Прозрачная жидкая взрывчатка под названием Астролит G ​​имеет очень высокую скорость детонации — 8 600 м/с, почти вдвое больше, чем у тротила. Кроме того, он остается взрывоопасным при практически любых погодных условиях, так как хорошо абсорбируется в земле. Полевые испытания показали, что Астролит G детонировал даже после того, как четверо суток находился в почве под проливным дождем.

Тетранитропентаэритрит

Тетранитрат пентаэритрита (PETN, ТЭН) — это нитратный эфир пентаэритрита, используемый в качестве энергетического и наполняющего материала для военных и гражданских целей. Вещество производится в виде белого порошка и часто является компонентом пластичных взрывчатых веществ. Он широко используется повстанческими отрядами и, вероятно, был выбран ими, потому что его очень легко активировать.

Внешний вид ТЭНа

ТЭН сохраняет свои свойства при хранении дольше, чем нитроглицерин и нитроцеллюлоза. В то же время он легко взрывается при механическом ударе определенной силы. Был впервые синтезирован в качестве коммерческого взрывного устройства после Первой мировой войны. Он был оценен как у военных, так и у гражданских специалистов, прежде всего, за его разрушительную силу и эффективность. Его закладывают в детонаторы, взрывные колпачки и взрыватели для распространения серии детонаций от одного заряда взрывчатого вещества к другому. Смесь примерно равных долей ТЭНа и тринитротолуола (ТНТ) создает мощную военную взрывчатку, называемую пентолитом, которая используется в гранатах, артиллерийских снарядах и боеголовках с кумулятивным зарядом. Первые заряды пентолита были выпущены из старого противотанкового оружия типа базуки во время Второй мировой войны.


Взрыв пентолита в Боготе

17 января 2019 года в столице Колумбии, Боготе, внедорожник, начиненный 80 кг пентолита, врезался в один из корпусов кадетской школы полиции «Генерал Сантандер» и взорвался. От взрыва погиб 21 человек, пострадавших, по официальным данным, было 87. Произошедшее было квалифицировано как террористический акт, так как машиной управлял бывший подрывник повстанческой армии Колумбии, 56-летний Хосе Альдемар Рохас. Власти Колумбии возложили ответственность за взрыв в Боготе на леворадикальную организацию, с которой они безуспешно ведут переговоры последние десять лет.


Взрыв пентолита в Боготе

ТЭН часто используют в террористических актах из-за его взрывной силы, возможности помещать в необычные упаковки и сложности обнаружения с помощью рентгеновского и другого обычного оборудования. Электрически активированный детонатор ударного типа можно обнаружить при обычном досмотре в аэропорту, если его перевозить на телах смертников, но он может быть эффективно скрыт в электронном приборе в виде пакетной бомбы, как это произошло при попытке взрыва грузового самолета в 2010 году. Тогда компьютерные принтеры с картриджами, наполненными ТЭН, были перехвачены органами безопасности только потому, что спецслужбы благодаря информаторам уже знали о бомбах.


Пластичные взрывчатые вещества — смеси, которые легко деформируются даже от незначительных усилий и сохраняют приданную им форму неограниченное время в условиях эксплуатационных температур.

Они активно применяются в подрывном деле для изготовления зарядов любой заданной формы непосредственно на месте проведения взрывных работ. Пластификаторами выступают каучуки, минеральные и растительные масла, смолы. Взрывчатыми компонентами служат гексоген, октоген, тетранитрат пентаэритрита. Пластификация взрывчатого вещества может быть произведена путем введения в его состав смесей нитратов целлюлозы и веществ, пластифицирующих нитраты целлюлозы.


Трициклическая мочевина

В 80-х годах прошлого века было синтезировано вещество трициклическая мочевина. Считается, что первыми, кто получил эту взрывчатку, были китайцы. Тесты показали огромную разрушительную силу мочевины — один ее килограмм заменял 22 кг тротила.

Эксперты соглашаются с такими выводами, поскольку «китайский разрушитель» имеет самую большую плотность из всех известных взрывчатых веществ и при этом обладает максимальным кислородным коэффициентом. То есть во время взрыва сжигается абсолютно весь материал. Кстати, у тротила он равен 0,74.

В реальности трициклическая мочевина не годится для военных действий, прежде всего, из-за плохой гидролитической стойкости. Уже на следующий день при стандартном хранении она превращается в слизь. Впрочем, китайцам удалось получить другую «мочевину» — динитромочевину, которая хоть и хуже по фугасности, чем «разрушитель», но тоже относится к одному из самых мощных взрывчатых веществ. Сегодня ее выпускают американцы на своих трех пилотных установках.


Идеальное взрывчатое вещество — это баланс между максимальной взрывчатой силой и максимальной стабильностью при хранении и транспортировке. Да еще и максимальная плотность химической энергии, невысокая стоимость в производстве и, желательно, экологическая безопасность. Добиться всего этого нелегко, поэтому для разработок в этой области обычно берут уже зарекомендовавшие себя формулы и пытаются улучшить одну из нужных характеристик без ущерба для остальных. Полностью новые соединения появляются крайне редко.

Загрузка...