;
Кейсы 3 декабря 2020

Почему так тяжело изучать нейтрино и что эта частица расскажет об истории Вселенной

Далее

Нейтрино является одной из самых распространенных частиц во Вселенной, при этом ее невероятно сложно обнаружить. Изучать нейтрино важно, потому что они содержат в себе информацию о явлениях и процессах, которые их порождают: это значит, что с помощью частицы можно узнать о происхождении Вселенной. Рассказываем обо всех тайнах, которые хранят в себе нейтрино.

Что такое нейтрино?

Нейтрино — это сверхлегкие частицы, образующиеся в процессе ядерных реакций. Большинство из тех, что были обнаружены на Земле, исходят от Солнца, которое превращает водород в гелий. Но в 1930-х годах было предсказано, что Солнце должно также производить нейтрино другого типа посредством реакций с участием углерода, азота и кислорода — так называемые «нейтрино CNO». И лишь почти век спустя детектор Borexino впервые обнаружил эти частицы.

До недавнего времени было вообще непонятно, есть ли у нее масса. В последние годы стало ясно, что есть, но очень маленькая. Ее точное значение неизвестно по сию пору, а имеющиеся оценки в общем сводятся к тому, что нейтрино примерно на 10 порядков легче протона. Примерно так же соотносится вес кузнечика (около 1 грамма) с водоизмещением современного атомного авианосца George Bush (около 100 тыс. тонн).

Частица не имеет или почти не имеет электрического заряда — эксперименты пока не дали однозначного ответа, а из всех фундаментальных физических взаимодействий достоверно участвует только в слабом и гравитационном.

Нейтрино подразделяются на три поколения: электронные, мюонные и тау-нейтрино. Они обычно перечисляются именно в таком порядке, и это не случайно: так отображается последовательность их открытия. Кроме этого, есть еще антинейтрино — это античастицы трех разных типов, соответствующих «обычным». Нейтрино разных поколений могут самопроизвольно превращаться друг в друга. Ученые называют это нейтринными осцилляциями, за их открытие присудили Нобелевскую премию по физике 2015 года.

Нейтрино — результат ядерных (и термоядерных, мы далее не будем выделять их отдельно) реакций. Их, неуловимых, очень много. По подсчетам физиков-теоретиков, на каждый нуклон (то есть протон или нейтрон) во Вселенной приходится около 109 нейтрино. Тем не менее, мы совершенно его не замечаем: частицы проходят сквозь нас. 

Как ученые ищут нейтрино?

Современные детекторы регистрируют не сами нейтрино — это пока невозможно. Объектом регистрации оказываются результаты взаимодействия частицы с веществом, заполняющим детектор. Его выбирают так, чтобы с ним реагировали нейтрино определенных, интересующих разработчиков, энергий. Поскольку энергия нейтрино зависит от механизма их образования, можно считать, что детектор рассчитан на частицы определенного происхождения.

Как только стало понятно, что нейтрино хоть и сложно, но все же можно зарегистрировать, ученые начали пытаться уловить нейтрино внеземного происхождения. Самый очевидный их источник — Солнце. В нем постоянно происходят ядерные реакции, и можно подсчитать, что через каждый квадратный сантиметр земной поверхности проходит около 90 млрд солнечных нейтрино в секунду.

На тот момент самым эффективным методом ловли солнечных нейтрино был радиохимический метод. Суть его такова: солнечное нейтрино прилетает на Землю, взаимодействует с ядром; получается, скажем, ядро 37Ar и электрон (именно такая реакция была использована в эксперименте Рэймонда Дэйвиса, за который ему впоследствии дали Нобелевскую премию).

После этого, подсчитав количество атомов аргона, можно сказать, сколько нейтрино за время экспозиции взаимодействовало в объеме детектора. На практике, разумеется, все не так просто. Надо понимать, что требуется считать единичные атомы аргона в мишени весом в сотни тонн. Соотношение масс примерно такое же, как между массой муравья и массой Земли. Обнаружилось, что похищено ⅔ солнечных нейтрино (измеренный поток оказался в три раза меньше предсказанного).

Детектор Super-Kamiokande: огромный резервуар цилиндрической формы, помещенный под землю на глубине 1 км; изнутри весь покрыт фотоумножителями; заполняется дистиллированной водой

Общей особенностью всех современных нейтринных телескопов являются меры, направленные на экранирование аппаратуры от всех посторонних частиц. Нейтрино, хотя их в природе очень много, засекаются детекторами очень редко. Любой посторонний шум от космических или земных частиц наверняка их заглушит.

Поэтому стандартное размещение нейтринной обсерватории — в шахте или, в некоторых случаях, под водой, чтобы вышележащая толща блокировала ненужное излучение. Эта толща тоже тщательно подбирается — горные породы, например, должны быть как можно менее радиоактивными. Граниты нам не подойдут, глины тоже. Хорошее место для детектора — шахта в толще чистого известняка.

Еще одно важное требование — быть как можно дальше от атомных электростанций. Работающий ядерный реактор является очень мощным источником антинейтрино, которые в данном случае излишни.

Лучшее направление для работы нейтринной обсерватории — прием частиц, пришедших снизу, сквозь нашу планету. Для нейтрино она прозрачна, для всего остального — нет.

Современные детекторы определяют нейтринное событие по «разрушительному эффекту». Когда неуловимая частица все-таки взаимодействует с веществом детектора, она вызывает разрушение первоначального атомного ядра с образованием каких-то иных частиц. Их-то затем и обнаруживают в детекторе.

Чтобы вызвать такую реакцию, нейтрино должно иметь собственную энергию не ниже определенного, нужного для данного детектора, уровня. Поэтому современная техника всегда имеет ограничение снизу — регистрирует нейтрино, имеющие энергию выше определенного уровня. В таком порядке мы их и рассмотрим.

Зачем мы вообще изучаем нейтрино?

Нейтрино рассказывают нам чрезвычайно много о том, как Вселенная создается и удерживается от распада. Нет другого способа ответить на многие вопросы.

Натаниэль Боуден, ученый из Ливерморской Национальной лаборатории имени Лоуренса

Эксперты сравнили поиск этих частиц с работой археологов, восстанавливающих доисторические артефакты с целью понять, какой жизнь была тогда. Лучшее понимание нейтрино может раскрыть тайны других элементов астрономии и физики: от темной материи до расширения Вселенной.

Эксперимент COHERENT Окриджской национальной лаборатории состоял из пяти детекторов частиц, предназначенных для непосредственного наблюдения высокоспецифического взаимодействия между нейтрино и ядрами атомов. В прошлом году эти ученые опубликовали исследование в Science о взаимодействии между двумя нейтрино, которое было выдвинуто в качестве гипотезы десятилетиями ранее, но никогда прежде не наблюдались.

Это не просто еще одна частица. Это попытка найти, причем сравнительно простым и относительно дешевым методом, — если сравнивать с Большим адронным коллайдером, например, — новую физику. Новая физика — это и понимание того, что такое темная материя: возможно, она окажется теми самыми стерильными нейтрино. И, что возможно, выход на новые технологии. Нельзя исключать, что новые нейтрино окажутся представителями неизвестного класса частиц, которые еще и взаимодействуют между собой каким-то иным способом. Если мы нападем на след этого нового взаимодействия, то не исключено, что мы научимся его использовать на практике: подобно тому, как открытие ядерного взаимодействия привело к появлению ядерных технологий. 

Григорий Рубцов, заместитель директора Института ядерных исследований.

Изучение испускаемых Землей нейтрино может помочь нам хотя бы понять, сколько в земном веществе радиоактивных элементов и где они в основном находятся. По части последнего существуют разные версии, начиная от того, что уран с торием — атрибут нижней части земной коры, и кончая тем, что источники радиации в ходе формирования планеты «утонули» к ее центру, и там существует нечто вроде ядерного реактора, причем периодически действующего.

Накопившиеся продукты распада, когда их становится достаточно много, останавливают цепную реакцию. Потом в раскаленной среде они потихоньку диффундируют наверх (они легче), освобождая место для новых порций делящегося материала, после чего процесс запускается снова. Если это так, то подобная цикличность могла бы помочь в объяснении перемен магнитной полярности Земли и, надо думать, во многом другом.

Интересен также вопрос о доле ядерных реакций в общем тепловыделении Земли. Напомним, что земные недра суммарно выдают порядка 47 ТВт тепла в год, но ученые до сих пор смутно представляют себе, какая часть этой энергии приходится на радиогенное тепло, а какая — на остаточное тепло, выделившееся когда-то при гравитационной дифференциации земного вещества.

Чем это интересно для обычного человека?

Технологии, которые разрабатываются для создания современных экспериментов по физике нейтрино, широко используются в промышленности уже сейчас, так что любое вложение в эту сферу окупается. Сейчас в мире ставятся несколько экспериментов, масштаб которых сравним с масштабом Большого адронного коллайдера.

Эти эксперименты направлены исключительно на исследование свойств нейтрино. В каком из них удастся открыть новую страницу в физике, неизвестно, но открыта она будет совершенно точно.

Как мы продвинулись в изучении нейтрино?

Накануне стало известно, что Японские ученые из Университета Цукубы и Токийского университета разработали космологическую модель, которая точно отражает роль нейтрино в эволюции Вселенной.

В результате выяснилось, что в областях, где много нейтрино, обычно присутствуют массивные скопления галактик. Еще один важный вывод: нейтрино подавляет кластеризацию темной материи и галактик, а также изменяет температуру в зависимости от собственной массы.

Также стало известно, что Borexino, огромный подземный детектор частиц в Италии, уловил невиданный ранее тип нейтрино, исходящий от Солнца. Эти нейтрино подтверждают гипотезу 90-летней давности и дополняют наше представление о циклах синтеза Солнца и других звезд. В 1930-х годах было предсказано, что Солнце должно также производить нейтрино другого типа посредством реакций с участием углерода, азота и кислорода — так называемые нейтрино CNO. И лишь почти век спустя детектор Borexino впервые обнаружил эти частицы.

Реакция CNO выделяет лишь крошечную часть от общего количества солнечной энергии, но у более массивных звезд она считается основной движущей силой термоядерного синтеза. Экспериментальное обнаружение нейтрино CNO означает, что ученые наконец получили связь между последними частями головоломки и могут расшифровать весь цикл солнечного термоядерного синтеза.

Подтверждение того, что CNO осуществляется в процессе термоядерной активности нашей звезды, где подобные реакции занимают не более 1%, укрепляет нашу уверенность в том, что мы точно понимаем, как работают звезды. 

Франк Калаприс, главный исследователь Borexinо

Детекторы нейтрино предназначены для отслеживания тех редких случаев, когда эти «призрачные частицы» случайно сталкиваются с другими атомами. Обычно в таких устройствах используются огромные объемы детекторной жидкости или газа, которые испускают вспышку света при «ударе» нейтрино. Подобные эксперименты обычно проводятся внутри камеры глубоко под землей, вдали от помех и воздействия других космических лучей.

Команда потратила годы, регулируя температуру инструмента, чтобы замедлить движение жидкости внутри детектора, и сосредоточилась на сигналах, исходящих из центральной области контейнера. В феврале 2020 года команда наконец-то уловила искомый сигнал и потратила почти год на его расшифровку и на то, чтобы удостовериться в отсутствии ошибок.

Эти данные могут не только улучшить наше понимание цикла слияния звезд, но и помочь ученым выяснить, насколько «металлическими» являются Солнце и другие звезды.

Читать также

Найдено предполагаемое царство исчезнувших хеттов. Что обнаружили археологи?

Ледник «Судного дня» оказался опаснее, чем думали ученые. Рассказываем главное

Открыт фермент, который обращает вспять старение клеток

Загрузка...