ИИ обучается быстрее по алгоритмам, похожим на мышление человека

ИИ может функционировать как человеческий мозг, если он запрограммирован на использование схожих алгоритмов обучения для новых объектов.

В новом исследовании группа ученых объясняет, как новый подход значительно улучшает способность программного обеспечения ИИ быстро изучать новые визуальные концепции.

Мы можем заставить ИИ учиться гораздо лучше, если будем обучать их таким образом, каким информацию воспринимает наш мозг. 

Максимилиан Ризенхубер, доктор философии, профессор нейробиологии Медицинского центра Джорджтаунского университета

Люди могут быстро и хорошо изучать новые визуальные концепции на основе немногочисленных данных — иногда достаточно лишь одного примера. Даже трех-четырехмесячные младенцы могут легко научиться распознавать зебр и отличать их от кошек, лошадей и жирафов. Но компьютерам обычно нужно «видеть» множество примеров одного и того же объекта, чтобы узнать, что это такое, объясняет Ризенхубер.

Поэтому необходимо было разработать программное обеспечение для определения взаимосвязей между целыми визуальными категориями, вместо того чтобы пытаться использовать более стандартный подход к идентификации объекта с использованием только низкоуровневой и промежуточной информации, такой как форма и цвет.

Группа ученых обнаружила, что искусственные нейронные сети, которые представляют объекты с точки зрения ранее изученных концепций, усваивают новые визуальные концепции значительно быстрее.

Дело в том, что архитектура мозга, лежащая в основе изучения визуальных концепций человека, основана на нейронных сетях, участвующих в распознавании объектов. Считается, что передняя височная доля мозга содержит «абстрактные» представления, выходящие за рамки формы. Эти сложные нейронные иерархии для визуального распознавания позволяют людям изучать новые задачи и, что особенно важно, использовать ранее полученные знания.

Несмотря на достижения в области искусственного интеллекта, зрительная система человека по-прежнему остается золотым стандартом с точки зрения способности делать обобщения на нескольких примерах: она может надежно работать с вариациями изображения и четко анализирует происходящее вокруг. 

Читать далее

Аборты и наука: что будет с детьми, которых родят

Посмотрите на самые красивые снимки «Хаббла». Что увидел телескоп за 30 лет?

Названо растение, которому не страшно изменение климата. Им питается миллиард человек

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
У летучих мышей нашли генетический «план Б» для адаптации к потере слуха
Наука
Найден способ помочь ИИ справляться со сложными задачами
Новости
В России создали безопасную систему для доставки ДНК-вакцин в клетки
Наука
Найден «рыбный завод», построенный предшественниками майя 4000 лет назад
Наука
Обзор TECNO Megabook S1: легкий металл
Технологии
Вспышки света из черных дыр озадачили астрономов
Космос
Интерпретируемость ИИ: как модели принимают решения
Мнения
Физики придумали, как раскрыть тайну темной материи
Космос
Ученые рассказали, как экстремальный холод влияет на сон
Наука
Марсианский метеорит раскрыл тайны воды на Красной планете
Космос
Хакеры удаленно взломали компьютер, используя соседний Wi-Fi
Новости
«Уэбб» заснял три огромные «невозможные» галактики
Космос
Телескоп запечатлел столкновение галактик на скорости 3,2 млн км/ч
Космос
Укус вместо укола: создана вакцина от малярии, распространяемая комарами
Наука
Физики определили форму отдельного фотона
Наука
Создатели ChatGPT планируют выпустить собственный браузер
Новости
Плотность промышленных роботов в мире удвоилась за семь лет
Новости
В Гибралтаре нашли «фабрику», на которой неандертальцы варили клей
Наука
Nvidia раскрыла, какие товары компании будут в дефиците и когда
Новости
Посмотрите на первое в истории фото звезды из другой галактики
Космос