Ученые создали метод измерения расстояний с помощью лазерных лучей, работающий даже в нерегулярной и сложно среде. Об этом пишет Nature Physics.
Лазерные лучи можно использовать для точного измерения положения или скорости объекта. Но для этого обычно требуется четкий и беспрепятственный обзор этого объекта. Это условие не всегда выполнимо. В биомедицине, например, исследуются структуры, которые находятся в нерегулярной и сложной среде. В таких условиях лазерный луч попросту отклоняется, рассеивается или преломляется.
Ученые из Утрехтского университета и TU Wien смогли получить измерения заданной точности даже в таких сложных условиях. Они специально модифицировали лазерный луч так, чтобы он доставлял желаемую информацию в неупорядоченной среде.
«Максимально возможная точность измерений — это центральный элемент всех естественных наук», — говорит Стефан Роттер из TU Wien. — «Например, в огромной установке LIGO, которая используется для обнаружения гравитационных волн, лазерные лучи посылают на зеркало, а изменения расстояния между лазером и зеркалом измеряются с чрезвычайной точностью».
Это работает так хорошо только потому, что лазерный луч проходит через сверхвысокий вакуум.
«Но давайте представим стеклянную панель, не идеально прозрачную, а грубую и неотшлифованную, как окно в ванной», — продолжает Аллард Моск из Утрехтского университета. «Свет, конечно, проходит, но преломляясь. Световые волны изменяются и рассеиваются, поэтому мы не можем точно увидеть объект по другую сторону окна невооруженным глазом». Аналогичная ситуация происходит тогда, когда необходимо исследовать крошечные объекты внутри биологической ткани: неупорядоченная среда мешает лучу света. Тогда простой регулярный прямой лазерный луч превращается в сложную волновую структуру, которая отклоняется во всех направлениях.
Но если точно знать, что мешающая среда делает со световым лучом, можно изменить ситуацию: создать сложный волновой узор вместо простого прямого лазерного луча, который преобразуется в точно желаемую форму. из-за беспорядков и ударов именно там, где необходимо добиться наилучшего результата. «Чтобы достичь этого, вам даже не нужно точно знать, что это за нарушения», — объясняет Дориан Буше, первый автор исследования. «Достаточно сначала отправить серию пробных волн через систему, чтобы изучить, как они меняются системой».
Метод был подтвержден экспериментально в Утрехтском университете: лазерные лучи направлялись через неупорядоченную среду в виде мутной пластины. Затем исследователи рассчитали оптимальные волны для анализа объекта за пределами пластины — это удалось сделать с точностью до нанометров.
Ученые смогли показать, что метод не только работает, но и является оптимальным в физическом смысле: «Точность нашего метода ограничена только так называемым квантовым шумом», — объясняет Аллард Моск. «Этот шум возникает из-за того, что свет состоит из фотонов — с этим ничего нельзя поделать».
Читайте также:
Спутник Сатурна Титан удивительно похож на Землю. Какие у человечества на него планы?
Большое количество серых китов начали голодать и умирать в Тихом океане
Треть переболевших COVID-19 возвращаются в больницу. Каждый восьмой — умирает