Математики уменьшили размер нейросети в 6 раз без ее переобучения

Команда математиков нашла способ уменьшить размер обученной нейронной сети в шесть раз, не затрачивая дополнительных ресурсов на ее переобучение. Подход основан на нахождении корреляции между весами нейронных связей в исходной системе и ее упрощенной версии. Результаты работы опубликованы в журнале Optical Memory and Neural Networks.

Структуры искусственных нейронных сетей и нейронов в живом организме основаны на тех же принципах. Узлы в сети связаны между собой, но некоторые из них получают сигнал, а некоторые — передают его, активируя или подавляя следующий элемент в цепочке. Для обработки любого сигнала — такого, как изображения или звука — требуется множество сетевых элементов и исходящих от них соединений. Однако модели компьютеров имеют ограниченные емкость и объем памяти. Для работы с большими объемами данных специалистам приходится изобретать различные способы снижения требований к емкости, включая так называемое квантование. Это помогает снизить потребление ресурсов, но требует переобучения системы.

«Несколько лет назад мы провели эффективное и экономичное квантование весов в сети Хопфилда. Это сеть с ассоциативной памятью с симметричными связями между элементами, которые формируются в соответствии с правилом Хебба. В ходе ее работы активность сети сводится к определенному состоянию равновесия, и когда оно достигается, задача считается решенной. Выводы, полученные в этом исследовании, позже были применены к сетям прямого обучения с глубоким обучением, которые сегодня очень популярны в распознавании изображений. Как правило, эти сети требуют повторное обучение после квантования, но мы нашли способ избежать этого».

Яков Карандашев, кандидат наук, доцент РУДН.

Основная идея упрощения искусственных нейронных сетей — это так называемое квантование весов, то есть уменьшение количества битов на каждый вес. Квантование предусматривает усреднение сигнала: например, если оно применяется к изображению, все пиксели, представляющие разные оттенки одного цвета, станут идентичными. Математически это означает, что нейронные связи, похожие по определенным параметрам, должны иметь одинаковый вес (или важность), выраженный числом.

Команда математиков из РУДН провела расчеты и создала формулы, которые эффективно устанавливают корреляции между весами в нейронной сети до и после квантования. На их основе ученые разработали алгоритмы, с помощью которых обученная нейронная сеть могла классифицировать изображения. В своем эксперименте математики использовали текстовый пакет из 50 тысяч фотографий, которые можно было разделить на 1 000 групп. После обучения сеть была квантована с использованием нового метода и не подвергалась повторному обучению. Затем результаты сравнивали с другими алгоритмами квантования.

После квантования точность классификации снизилась всего на 1%, но требуемый объем хранилища был уменьшен в шесть раз. Эксперименты показывают, что эта сеть не требует повторного обучения из-за сильной корреляции между исходным и квантованным весами. Такой подход может помочь экономия ресурсов при выполнении срочных задач или работе на мобильных устройствах.

Читать еще:

Ядерный ракетный двигатель строят для полетов на Марс. Чем он опасен?

Посмотрите на изображение Марса из 8 триллионов пикселей.

Лунная пыль смертельно опасна для человека. Спутник Земли не подходит для колонизации?

Аборты и наука: что будет с детьми, которых родят.

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
Ученые создают датчики, похожие на усики комаров, для обнаружения землетрясений
Наука
ИИ диагностирует диабет, ВИЧ и COVID по одному образцу крови
Наука
Китайские генетики создали «рис для укрепления здоровья сердечной системы»
Наука
Тяжелое генетическое заболевание вылечили до рождения в утробе матери
Наука
Высокоскоростная съемка показала, что происходит с каплей при падении в бассейн
Наука
В России создали ИИ-платформу для ускоренной разработки лекарств
Иннополис
Физики побили рекорд Китая по удержанию плазмы в искусственном Солнце
Наука
Мертвая галактика посылает мощные радиовсплески: ученые не могут это объяснить  
Космос
«Невозможная» пара звезд-вампиров странно ведет себя в космосе
Космос
В iPhone 16e стоят чипы, которые оказались недостаточно хороши для iPhone 16
Новости
Выяснилось, как темная тема на сайтах влияет на гаджеты
Новости
Ученые впервые создали «пластичный» инопланетный лед
Наука
В каких странах больше боятся замены людей на ИИ, показало исследование
Наука
Мини-землетрясения под ледяным щитом Гренландии могут изменить уровень моря
Наука
Посмотрите, как Blue Ghost летит над обратной стороной Луны
Космос
Польский стартап представил робота с искусственными мышцами и костями
Новости
Ископаемые находки меняют представление об эволюции неандертальцев
Наука
Microsoft представила квантовый чип Majorana 1 «из новой формы материи»
Новости
Посмотрите на огненный дождь в небе: фрагменты ракеты SpaceX упали в Европе
Космос
Жители России смогут наблюдать редкое астрономическое явление в феврале
Космос