Создан координационный полимер на основе радикалов для электроники следующего поколения
Наука 16 марта 2021

Создан координационный полимер на основе радикалов для электроники следующего поколения

Далее

Ученые из Японского института молекулярных наук (IMS) создали новый рецепт координационных полимеров. Работа опубликована в журнале Американского химического общества.

Материалы с неспаренными электронами на двумерных сотовых решетках привлекли большое внимание ученых как потенциальные кандидаты для будущих спинтронных и фотонных устройств, а также электроники следующего поколения. Координационный полимер на основе органических радикалов (КП) является одним из кандидатов в такие материалы. Он имеет структуру, содержащую атомы металла в центре повторяющейся последовательности органических радикалов. Сейчас подготовлено несколько КП на радикальной основе со структурой сотовой решетки. Однако глубокое исследование их функций и разработка материалов часто затруднены из-за их нестабильности и плохой кристалличности.

Радикалы — это атомы или молекулы с неспаренным электроном во внешней оболочке. Отсутствие спаривания с другим электроном делает его чрезвычайно реактивным с другими веществами, поэтому радикалы, как правило, очень недолговечны. Однако есть некоторые радикалы, которые долговечны даже в повседневных условиях температуры и давления. Эти стабильные радикалы демонстрируют электрические, магнитные и фотоэмиссионные свойства, аналогичные свойствам неорганических материалов, таких как металлы, оксиды и халькогениды.

Команда IMS разработала рецепт КП, которые долговечны в условиях окружающей среды. В нем используется совершенно новый органический радикал треугольной формы, трис (3,5-дихлор-4-пиридил) метильный радикал, или trisPyM. Он не только стабилен, но и проявляет фотолюминесценцию в растворе и твердом состоянии. Кроме того, объединив trisPyM с цинксодержащей молекулой Zn(II) и получив trisZn, ученые разработали стабильный, кристаллический и фотолюминесцентный КП на основе радикалов с двумерной сотовой структурой решетки.

TrisZn — это всего лишь доказательство концепции нашего рецепта, и множество радикальных КП в принципе можно получить, просто используя различные ионы металлов или металлические комплексные элементы. Я надеюсь, что некоторые из этих материалов найдут практическое применение или покажут беспрецедентные возможности. явления, которые продвигают науку о материалах.

Тетсуро Кусамото из IMS


Читать далее

Уран получил статус самой странной планеты в Солнечной системе. Почему?

Люди могут выдерживать очень низкие температуры даже без источников тепла

Физики создали аналог черной дыры и подтвердили теорию Хокинга. К чему это приведет?