Авторы исследования отмечают, что такой подход перспективен для создания новых светоизлучающих устройств, поскольку пористая структура аэрогеля защищает люминесцентные вещества от разрушающего воздействия внешней среды, а также позволяет совмещать в одной матрице разные люминофоры, что дает возможность получить более гладкий и равномерный спектр излучения, чем у современных светодиодов. Результаты работы опубликованы в Journal of Solid of State Chemistry, а теперь исследователи разрабатывают прототип светоизлучающего устройства на основе нового подхода.
Сегодня в мире используют миллионы светодиодов, но у них до сих пор есть серьёзные недостатки. Главный среди них — это неравномерность и неестественность излучения. Чаще всего светодиоды сами по себе испускают свет в узком диапазоне длин волн, то есть только определенного цвета — например, только зеленый или только красный. Поэтому чтобы делать с ними по-настоящему эффективные светоизлучающие устройства прибегают к разным хитростям, что значительно повышает их стоимость.
Так, в типичном современном белом светодиоде есть сразу два светоизлучающих вещества. Одно из них — это люминесцирующее вещество, которое испускает синий и ультрафиолетовый свет под действием электрического тока, а второе это полупрозрачная фосфоресцирующая пленка, которая уже под действием синего излучения начинает тоже испускать свет, но только уже желтый. Смесь желтого и синего в нужных пропорциях дает белый, но такая комбинация, конечно, отличается от естественного белого света: в ней слишком много ультрафиолета, а также другие соотношения между интенсивностями излучения на различных длинах волн, и в результате от такого света быстрее устают глаза. Поэтому ученые ищут новые подходы к созданию светодиодов.
Исследователи из РХТУ предложили использовать для этого аэрогели — так называют материалы, представляющие собой твердые легкие губки, поры которых заполнены газом. Аэрогели обладают очень маленькой плотностью, огромной пористостью, до 99% аэрогеля занимает воздух, а также огромной площадью внутренней поверхности до 1500 м²/г, то есть если просуммировать общую площадь внутренней поверхности всех пор кусочка аэрогеля массой всего в пять грамм, то получится целое футбольное поле. Поэтому аэрогели уже используют для создания разных теплоизоляционных материалов, суперконденсаторов и других применений.
«Мы попробовали внедрить люминесцентные вещества в аэрогели по двум основным причинам. Во-первых, у многих люминофоров заметно ухудшается спектр излучения с появлением даже самых незначительных примесей, а также они стремительно деградируют при контакте с влажным воздухом, который их окисляет — аэрогель может выступать в таких случаях как своего рода защитник люминофора от окружающей среды, — рассказывает один из авторов работы, старший научный сотрудник РХТУ, Артём Лебедев. — Во-вторых, аэрогель можно использовать как объемный излучатель, то есть встроить в него не один, а несколько люминесцентных веществ, излучение которых вместе даст гладкий и равномерный спектр. Также аэрогель хорошо подходит и для классической схемы белого светодиода, в котором ультрафиолетовое излучение одного вещества возбуждает фотолюминесценцию другого вещества. Аэрогель хорошо поглощает ультрафиолет и не дает ему выходить наружу, а вместо этого отправляет в путешествие по сложнейшему лабиринту пор пока ультрафиолет не дойдет до молекул люминофора. В результате получается равномерный спектр, сглаженный вот этой сложной внутренней архитектурой аэрогеля».
Рецепт лабиринта
В работе ученые использовали в качестве люминесцентного вещества металлоорганическое соединение трис(8-оксихинолина) алюминия (Alq₃). Это одно из самых известных соединений, которое используют для создания органических светоизлучающих диодов. Alq₃ возбуждается ультрафиолетом, а само излучает зеленый свет с максимумом интенсивности в области 500 нм. В качестве матрицы Alq₃ выступал самый обычный аэрогель из диоксида кремния. Синтез такого гибридного материала проводили в несколько этапов.
Сначала ученые получили из кремнийорганических прекурсоров гидрогель. Этот материал очень похож на аэрогель — такая же легкая пористая губка, каркас, который сделан из сшитых между собой молекул диоксида кремния, но только поры этой системы заполнены не газом, а жидкостью — в данном случае это был изопропанол, в котором проводили синтез гидрогеля. Дальше нужно было внедрить в эту матрицу Alq₃, который плохо растворяется в изопропаноле, но имеет более высокую растворимость в ацетоне. Поэтому изопропанол в порах гидрогеля постепенно заменяли на ацетон, а потом всю губку погружали в раствор Alq₃ в ацетоне, в результате пористая структура геля впитывала в себя люминофор.
После этого гидрогель нужно было превратить в аэрогель. Если попытаться просто высушить гидрогель на воздухе, то его внутренняя структура схлопнется, и получить твердый пористый материал не выйдет. Поэтому гидрогели высушивают в среде сверхкритического диоксида углерода, нагретого внутри специального аппарата при давлении в 120 атмосфер до температуры выше 31 градуса. В таких условиях CO₂ неограниченно смешивается с растворителем в порах геля. Для успешной сушки CO₂ непрерывно подается в аппарат в течение нескольких часов, за счет чего из геля полностью удаляется растворитель. Когда он полностью удален и давление начинают постепенно уменьшать, то CO₂ превращается в газ и, наконец, получается гибридный аэрогель со встроенным Alq₃. В обычных условиях он выглядит как твердый полупрозрачный материал, но при облучении ультрафиолетом он начинает активно светиться зеленым цветом.
Ученые показали, что такой многостадийный синтез не вредит самому аэрогелю: Alq₃ не забивает и не разрушает поры, а встраивается в объем материала, практически не изменяя его основные свойства. Кроме того, исследователи оптимизировали условия синтеза, а точнее соотношение между количеством используемого растворителя (изопропанола) и кремнийорганического прекурсора. Они показали, что интенсивней всего светятся аэрогели, полученные из смесей, в которых изопропанола было в 7 раз больше, чем прекурсора аэрогеля.
От демонстрации возможностей к первому прототипу
Авторы работы подчеркивают, что их исследование — это только первая демонстрация возможностей нового подхода и для полученных аэрогелей пока некорректно оценивать такие конечные технические характеристики светоизлучающих устройств как энергоэффективность. Сейчас ученые продолжают работу и внедряют в аэрогели уже другие металлоорганические люминесцирующие вещества, чтобы комбинировать их спектры излучения. В ближайшее время исследователи планируют сделать прототип светоизлучающего устройства на основе аэрогелей.
«В этой первой работе мы уже показали перспективность подхода с люминесцентными аэрогелями, но у этого подхода есть еще одна очень важная перспектива», — рассказывает Артём Лебедев. «Дело в том, что сам Alq₃ стоит очень дорого. Это связано с необходимостью его многократной очистки, с трудностями синтеза. В то же время исходный хинолин, из которого его синтезируют, значительно дешевле. И вот если придумать, как синтезировать металлоорганический комплекс из его прекурсоров непосредственно внутри „защитной“ оболочки аэрогеля, в инертной среде сверхкритического диоксида углерода, то это было бы очень и очень выгодно. Над этим мы сейчас активно работаем».
Читать далее
Замедление вращения Земли вызвало выброс кислорода на планете