Иннополис 10 декабря 2021

На конкурсе по применению ИИ разработчики из России заняли второе место

Далее

Специалисты Университета Иннополис заняли второе место на конкурсе по применению искусственного интеллекта. Как сообщила «Хайтеку» пресс-служба ИТ-вуза, россияне уступили только команде из Microsoft Research.

Участники конкурса по применению ИИ Open Catalyst Challenge разрабатывали алгоритмы по применению глубокого обучения для квантовой химии и поиска катализаторов для возобновляемой энергетики. Организаторы конкурса — Meta AI (Facebook AI Research) и Университет Карнеги — Меллона. Он прошел в рамках крупнейшей ежегодной конференции по машинному обучению и вычислительной нейробиологии NeurIPS.

Для работы в феврале 2021 года участники получили самый объемный датасет по квантовохимическим свойствам материалов и молекул в мире — набор данных содержит 1,2 млн молекулярных релаксаций с результатами более 250 млн вычислений методом DFT. Основная задача — переход от затратных по времени и ресурсам квантовохимических расчетов, которые занимают до 24 часов на структуру, к более быстрым предсказаниям на основе машинного обучения — менее 0,1 секунды на предсказание. Данный датасет позволяет обучить модели для поиска более активных и энергоэффективный катализаторов для процессов превращения малых молекул в более ценные продукты и для хранения электрической энергии.

«Глобальное потепление из-за избыточной концентрации СО2 в атмосфере, а также неравное потребление электрической энергии в больших городах в зависимости от времени суток стало вызовом для создания новых способов хранения энергии, в том числе из возобновляемых источников. Один из таких подходов — использование СО2 как молекулу-аккумулятор, — объясняет Руслан Лукин, руководитель Лаборатории развития продукта в сфере искусственного интеллекта в новых материалах Университета Иннополис — За счет электрохимических процессов диоксид углерода может быть сконвертирован в более ценные малые молекулы — метан, этилен, метанол, этанол — и использован как для выработки электрической энергии обратно, так и в качестве строительного блока для производства полимеров и крупнотоннажных химических продуктов».

В конкурсе приняли участие Руслан Лукин, Ростислав Григорьев, Максим Фадеев и Адель Яруллин.

Во время конкурса специалисты Университета Иннополис построили модели на основе графовых нейросетей с передачей информации для предсказания энергии адсорбции из структуры катализатора и реагента. С помощью этого можно найти катализаторы, которые позволят сделать эти процессы возможными, а также отобрать среди огромного пространства катализаторов наиболее селективные и энергоэффективные с точки зрения каталитических процессов. К тому же данный датасет позволит найти более эффективные электрокатализаторы для водородной энергетики и производства удобрений напрямую из атмосферного азота, а также более экологичные автомобильные катализаторы.

Всего в соревновании участвовали 30 решений от команд из Microsoft Research, Technical University of Denmark, Университета Карнеги Меллон, Technical University of Munchen, Texas A&M University, KAUST, AIRI и т.д. Такое количество обусловлено очень высоким порогом вхождения: нужны мощные GPU сервера для обучения графовых нейросетей на данных по структурам, хорошая экспертиза в глубоком обучении на химических структурах и методах работы с данными кристаллических структур.

Группы работали над решениями до октября. Они оценивались по метрике точности модели MAE (Mean Absolute Error). «Проверка проводилась по нескольким тестовым разбивкам, а также учитывалась доля предсказаний, чья ошибка не превышает значение 0.01 eV, что говорит о том, что модели машинного обучения позволяют предсказывать свойства с той же точностью, что и квантовохимические расчеты. Точность решения победителей из Microsoft Research — 0,547 eV, наша точность — 0,618 eV», — пояснил Руслан Лукин. Вместе с ним в команде работали еще три специалиста Института искусственного интеллекта Университета Иннополис — Ростислав Григорьев, Максим Фадеев и Адель Яруллин.

«В этом году мы начали развивать исследования в области поиска и улучшения архитектур глубокого обучения, для предсказания свойств материалов и молекул. Архитектуры, представленные нашей командой на конкурсе, являются универсальными, и могут быть использованы как для предсказания свойств кристаллических материалов для применения их в катализе, поиска материалов для нейроморфных вычислений, а также и в области предсказания свойств молекул поиска новых лекарств. — заявил Руководитель Института искусственного интеллекта Университета Иннополис Рамиль Кулеев — Это значительно сократит время на проведение расчетов и экспериментов, а также позволит в дальнейшем более эффективно решить обратную задачу поиска материалов и молекул с заданными свойствами».


Читать далее

Посмотрите на метеорит, который пролетел над Канадой

Посмотрите на первую микрофотографию штамма омикрон

Китайский самолет летит в 5 раз быстрее скорости звука: он облетит Землю за несколько часов