ИИ использует данные, недоступные другим, чтобы ускорить открытие лекарств

Исследователи разработали систему обучения, которая использует большие объемы немаркированных данных — они недоступны другим моделям.

Исследователи из Инженерного колледжа Университета Карнеги-Меллона решили использовать использовать большой объем немаркированных молекул для построения моделей машинного обучения. Она делает предсказания лучше другим моделей. 

Исследователи создали самообучающийся ИИ MolCLR с помощью графовых нейронных сетей (GNNS). 

MolCLR значительно повышает производительность моделей машинного обучения, так как использует  примерно 10 млн немаркированных данных о молекулах.

Амир Барати Фаримани, доцент кафедры машиностроения.

Чтобы объяснить как работают маркированные и немаркированные данные, представьте фотографии собак и кошек. В одном наборе каждое животное помечено названием своего вида. В другом наборе изображения не сопровождаются надписями.

Для человека разница между этими двумя типами животных может быть очевидной. Но для модели машинного обучения нет. Это значит, что немаркированные данные не всегда могут правильно обучить модель. Если применить эту аналогию к миллионам непомеченных молекул, на идентификацию которых вручную у людей могут уйти десятилетия, становится понятно, что нужно решать проблему иначе. 

Исследовательская группа учила свою структуру  MolCLR тому, как использовать немаркированные данные, — нужно сравнить положительные и отрицательные пары из расширенного графа молекул. Графики, преобразованные из одной и той же молекулы, считаются положительной парой, а графики, преобразованные из разных молекул, — это отрицательная пара. Поэтому похожие молекулы остаются близко друг к другу, а остальные отодвигаются далеко.

Во время тестов модель машинного обучения работала эффективнее других и могла различать, какие химические вещества представляют наиболее серьезную угрозу для здоровья человека.

Читать далее:

Самое большое генеалогическое древо человечества показало историю нашего вида

Опасность бесплатных VPN. Почему их нельзя скачивать и как защитить себя?

Почему Ганимед — самый странный спутник и есть ли на нем жизнь

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
Тайны древней звезды по соседству изучили, «подслушав ее песню»
Космос
Baidu делает ИИ для перевода звуков животных в человеческую речь
Наука
Оказалось, ИИ врет чаще при одном условии: как этого избежать
Новости
Суперкомпьютер Маска сжирает электричество как 300 000 домов: люди протестуют
Новости
Посмотрите, как робот стремительно отбивает подачи в настольном теннисе
Новости
Физики исполнили мечту алхимиков: свинец в коллайдере превратили в золото
Наука
Создано музыкальное приложение для реабилитации после инсульта
Наука
«Эффект аккордеона» превращает жесткий графен в эластичный материал
Наука
ИИ восстановил имя автора свитка, который пережил последний день Помпеи
Наука
Частный лунный модуль вышел на орбиту спутника после двух месяцев полета
Космос
Предок тираннозавра «иммигрировал» в Америку из Азии, считают ученые
Наука
Обновленный Gemini 2.5 Pro от Google возглавил рейтинг ИИ для разработчиков
Новости
Ученые решили проблему, которая мешала запуску термоядерных реакторов почти 70 лет
Наука
Китайское «супероружие» для подводных диверсий оказалось не таким, как считалось
Новости
Отключение мобильного интернета в Москве: какие последствия для бизнеса
Новости
Киберполиция назвала новые схемы мошенников: как они воруют аккаунты на «Госуслугах»
Новости
Хокинг предсказал гибель Земли: оказалось, НАСА сочло угрозу реальной
Наука
Создатель Ethereum признал свои ошибки и решил изменить криптовалюту
Новости
«Ред ОС 8» заработала на Arm-платформах — теперь и на «Байкале»
Новости
Компания Цукерберга использовала уязвимость подростков для рекламы
Новости