Нейросеть научили определять градус и сорт вина с 95% точностью

Ученые из NIST разработали новый тип аппаратного обеспечения для искусственного интеллекта (ИИ), которое может потреблять меньше энергии и работать быстрее — и оно уже умеет виртуально дегустировать вина.

Ученые из программы NIST Hardware for AI и их коллеги из Университета Мэриленда создали свою нейронную сеть, которая работает с повышенной эффективностью. 

Как и в случае с традиционными компьютерными системами, у ИИ есть физические аппаратные схемы и программное обеспечение. В аппаратном обеспечении обычно есть большое количество обычных кремниевых чипов, которые потребляют много энергии: например, на обучение одного современного коммерческого процессора нужно примерно 190 мегаватт-часов (МВт*ч) электроэнергии.

Менее энергоемкий подход — использовать другие виды оборудования для создания нейронных сетей. Одно из многообещающих устройств — это магнитный туннельный переход (MTJ). Устройства на MTJ потребляют в несколько раз меньше энергии, чем их традиционные аналоги. MTJ работают быстрее, так как хранят данные в том же месте, где выполняют вычисления.

Новая нейросеть, как и обычные дегустаторы, должна натренировать свой вкус. Команда обучила сеть, используя 148 вин, изготовленных из трех видов винограда. Каждое виртуальное вино имело 13 характеристик, которые необходимо было учитывать: градус алкоголя, цвет, щелочность и магний. Каждой характеристике было присвоено значение от 0 до 1, чтобы сеть учитывала его и отличала одно вино от другого.

Дальше ИИ прошло виртуальный тест с набором данных, который включал 30 неизвестных вин. Система работала с точностью 95,3%. 

У авторов не было задачи создать ИИ-сомелье. Главный вывод — устройства MTJ можно расширить и использовать для создания новых систем ИИ. 

Количество энергии, потребляемой системой, зависит от ее компонентов, но если использовать MTJ в качестве синапсов, то можно сократить потребление энергии вдвое.

Читать далее:

НАСА: телескоп «Джеймс Уэбб» необратимо поврежден от удара небольшого метеорита

Физики нашли универсальные «часы» в космосе: они точнее атомных

Телескоп «Джеймс Уэбб» сделал первый снимок Юпитера: на нем сразу 9 двигающихся целей

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
Квантовые инженеры поместили кота Шредингера в компьютерный чип
Наука
Кофе может снизить риск смертности, но только в одном случае
Наука
Этот ядерный двигатель поможет быстрее долететь до Марса: как он работает
Космос
Запуск Falcon 9 завершился успехом: что было на борту миссии
Космос
Прототип Boom Supersonic XB-1 приблизился к звуковому барьеру
Новости
Ученые заглянули внутрь нейтронных звезд, используя квантовую физику
Космос
Квантовые симуляторы: объяснение от ученого
Мнения
Источник в СМИ назвал возможную причину сбоя рунета
Новости
Мошенники начали выдавать себя за начальников в рабочих чатах: как это работает
Новости
Холодные атомы этого металла могут создавать новые состояния материи
Наука
Древние артефакты в Украине раскрыли тайны навигации викингов
Наука
Послушайте, как звучат вспышки на Солнце: данные собрал Solar Orbiter  
Космос
Тяжелый беспилотник на водородных топливных ячейках впервые испытали в Китае
Новости
Ученые создали катализатор, который нарушает законы физики
Наука
Физики обнаружили необычные магнитные свойства в трехслойном графене
Наука
Биоинженеры создали ДНК-робота, который может менять форму искусственной клетки
Наука
«Горы» на нейтронных звездах могут вызывать рябь в пространстве-времени
Космос
На телах древних мумий из Перу нашли сложные узоры татуировок
Наука
У черной дыры прячется белый карлик, движущийся с половиной скорости света
Космос
Стартап из России разрабатывает нанопротез для восстановления поврежденных нервов
Наука