Ученые впервые доказали предполагаемое существование вихрей в черных дырах. «Хайтек» рассказывает, почему это важно и как изменит науку.
Черные дыры — это астрономические объекты с чрезвычайно сильным гравитационным притяжением, от которого не может ускользнуть даже свет. Хотя идея тел, улавливающих свет, существует с XVIII века, первое прямое наблюдение черных дыр состоялось в 2015 году.
С тех пор физики провели бесчисленное количество теоретических и экспериментальных исследований, чтобы лучше понять природу этих космологических объектов. Новое исследование расширяет понимание ученых об уникальных характеристиках, свойствах и динамике черных дыр.
Вихри и черные дыры
Сотрудники Университета Людвига-Максимилиана и Института физики Общества Макса Планка недавно провели теоретическое исследование возможного существования вихрей в черных дырах. Согласно исследованию, опубликованному в журнале Physical Review Letters, теоретически они могут существовать.
Вплоть до публикации нового исследования физики не изучали вращающиеся черные дыры в рамках этой концепции. Однако они не только могут существовать. Это даже, скорее, правило, а не исключение.
Что сделали ученые?
Ученые выполнили несколько расчетов. Они основывались на недавно разработанной квантовой модели черных дыр, основанной на гравитонных конденсатах Бозе-Эйнштейна. Напомним, гравитоны — гипотетические безмассовые элементарные частицы. Они — переносчики гравитационного взаимодействия и кванты гравитационного поля без электрического и других зарядов. Предположительно, всегда движутся со скоростью света.
![](https://hightech.fm/wp-content/uploads/2022/09/20190410-78m-4000x2330-1.jpg)
Фото: Event Horizon Telescope Collaboration
Ключевая цель нового исследования — изучить вращающиеся черные дыры на квантовом уровне, чтобы понять, действительно ли они допускают существование вихревых структур.
Поскольку вращающиеся конденсаты Бозе-Эйнштейна уже активно изучали в лабораториях, известно, что они допускают вихревую структуру, если вращаются достаточно быстро. Это и вдохновило ученых искать их также в моделях вращающихся черных дыр.
Что выяснили физики?
В рамках исследования ученые показали, что черную дыру с экстремальным спином можно описать как гравитонный конденсат с завихренностью. Примечательно, что это согласуется с предыдущими исследованиями.
Ранее физики уже предполагали, что экстремальные черные дыры устойчивы к излучению Хокинга. Напомним, это гипотетический процесс излучения черной дырой разнообразных элементарных частиц, преимущественно фотонов. Излучение Хокинга — главный аргумент ученых относительно распада небольших черных дыр, которые теоретически могут возникнуть в ходе экспериментов на БАК.
Также исследование показало, что при наличии подвижных зарядов общий вихрь черной дыры захватывает магнитный поток калибровочного поля. В итоге это приводит к характерному излучению, которое можно наблюдать экспериментально. Таким образом, теоретические предсказания ученых открывают новые возможности для наблюдения за новыми типами материи, включая темную материю из миллизарядных частиц.
![](https://hightech.fm/wp-content/uploads/2022/09/theoretical-physicists-1024x859.jpg)
Как отметили авторы исследования, завихренность — это совершенно новая характеристика черных дыр. На классическом уровне (если не обращать внимание на их квантовую структуру) они полностью характеризуются тремя показателями: массой, спином и зарядом. Теперь ученые добавили к этому списку завихренность.
Что в итоге?
То, что ученые доказали предполагаемое существование вихрей в черных дырах, меняет науку. Например, это объясняет космическую нестыковку: почему у черных дыр с максимальным спином отсутствует излучение Хокинга. Таким образом, в будущем эта теория проложит путь к новым экспериментальным наблюдениям и теоретическим выводам об их природе.
Например, вихревые структуры черных дыр могут объяснить чрезвычайно сильные магнитные поля, которые возникают в активных ядрах галактик Вселенной. Кроме того, потенциально они могут лежать в основе почти всех известных галактических магнитных полей.
В будущем гравитационно-волновые наблюдения за слиянием черных дыр, каждая из которых отличается вихрями, помогут изучить квантовые аспекты пространства-времени.
Читать далее:
Космический самолет доставит грузы на МКС и приземлится в обычном «аэропорту»
Звезда приблизилась к черной дыре и ее разорвало: ученые наблюдали это с трех телескопов
Ученые нашли следы генетических мутаций в крови каждого человека, который побывал в космосе