Кейсы 4 сентября 2023

В Большом адронном коллайдере наблюдали редкие гиперядра: почему это важно

Далее

Физики, работающие с детектором LHCb, наблюдали редкие гипертритона и антигипертритона при столкновении протонов в Большом адронном коллайдере. «Хайтек» рассказывает, что такое гиперядра и почему наблюдение новых частиц важно для поиска темной материи и исследования нейтронных звезд.

Весной 2022 года Большой адронный коллайдер (БАК) — крупнейший в мире ускорить частиц, построенный в Европейском центре ядерных исследований (ЦЕРН) на границе Швейцарии и Франции — «включили» в третий раз после нескольких лет технического обслуживания и ремонта. Но исследователи продолжают анализировать данные, собранные во время предыдущего запуска, и совершать удивительные открытия.

Физики коллаборации LHCb объявили о наблюдении в 2016–2018 годах более 100 ядер редких гипертритона и его «антипода». Результаты исследования представили на конференции Европейского физического общества по физике высоких энергий.

Что такое гиперядра?

При проведении экспериментов с протонами внутри БАК два пучка положительно заряженных элементарных частиц, движущиеся по и против часовой стрелки, разгоняются до скоростей близких к скорости света и сталкиваются друг с другом. В результате таких столкновений, как правило, формируются атомные ядра и антиядра — аналоги, состоящие из античастиц. Гораздо реже формируются нестабильные гиперядра.

Атомные ядра (антиядра) состоят из протонов и нейтронов либо соответствующих им античастиц. Протоны состоит из двух верхних и одного нижнего кварка, а нейтроны — из одного верхнего и двух нижних кварков. Гиперядра напоминают атомные ядра, но в них две эти частицы дополняют гипероны — фермионы, в состав которых входят странные кварки.

Как физики нашли гиперядра?

Гипертритон — одно из таких гиперядер. Тритон — это ядро трития, радиоактивного изотопа водорода. Оно состоит из одного протона и двух нейтронов. В гипертритоне место одного из нейтронов занимает лямбда-гиперон — частица с одним странным кварком. Гипертритон и его аналог из античастиц живут около 240 пс (240∙10−12 с), после этого они исчезают, превращаясь в каскад частиц меньшей массы. 

В редких случаях при столкновении протонов внутри коллайдера возникают гипертритон или антигипертритон. За время жизни гиперон в гипертритонах пролетает около 40 см, а затем распадается на протон и пион — положительно заряженную пару из кварка и антикварка. Пион вылетает из ядра, но протон остается внутри, превращая гипертритон в ядро гелия-3. Аналогичный процесс происходит и для антигипертритона: за два шага он превращается в антигелий-3 и пион. 

Исследователи коллаборации LHCb разработали метод для поиска гиперядер на основе продуктов распада — «пионов» и ядер гелия или антигелия. Измерив массы обнаруженных экспериментом ядер, они пришли к выводу, что распад гипертритонов и антигипертритонов мог быть их единственным возможным источником.

Схема двухстепенчатого распада гипертритона на пион и гелий-3. Изображение: LHCb

Почему это важно?

Изучение гипертритонов и антигипертритонов интересно не только с точки зрения физики элементарных частиц. Астрофизики полагают, что лямбда-гипероны, которые входят в состав таких частиц, образуются внутри нейтронных звезд — остатков массивных звезд, переживших взрыв сверхновой. 

Из-за короткого времени жизни изучать лямбда-гипероны в звездах практически невозможно. Наблюдая за рождением, свойствами и распадом таких частиц внутри коллайдера исследователи смогут лучше понять физические процессы внутри таких сверхплотных космических объектов. 

Еще одно направление исследований — это поиск темной материи. Антигелий-3, который образуется из антигипертритонов, астрофизики связывают с распадом темной материи, и предлагают использовать для ее обнаружения.

С одной стороны, антиядра рождаются при столкновениях космических лучей с межзвездной средой. С другой стороны, теоретически они могут возникнуть при аннигиляции частиц темной материи. Чтобы определить ожидаемое количество ядер антигелия-3, достигающих Земли, и возможные отклонения от него, фундаментальное значение имеет точное знание вероятностей их создания и уничтожения, которые могут быть рассчитаны в экспериментах БАК.


Читать далее:

Физики впервые наблюдали «кольца Алисы»: квантовый вход в «зазеркалье»

Исследователи превратили раковые клетки в мышечную ткань

Посмотрите, как Сатурн максимально приблизился к Земле

На обложке: детектор LHCb на БАК. Изображение: CERN