Нейросети ускорили поиск подходящих для лекарств молекул в 2000 раз

Ученые из группы «Глубокое обучение в науках о жизни» Института искусственного интеллекта AIRI разработали метод, который позволит симулировать поведение органических молекул в 2 тысячи раз быстрее, чем при традиционном подходе, основанном на решении уравнений квантовой физики. Об этом сообщает AIRI в своем пресс-релизе.

Компьютерное моделирование является одним из ключевых инструментов современной фармацевтической отрасли, поскольку оно позволяет предсказать свойства молекулы без ее предварительного синтеза. Зачастую используются методы на основе теории функционала плотности (DFT), которые позволяют предсказывать энергии молекулярных конформаций с высокой точностью. Однако у DFT-симуляторов есть один существенный минус — они требуют значительного времени на вычисление.

Этого недостатка лишены нейросети, которые, исходя из межатомных взаимодействий молекул, дают возможность прогнозировать полезные свойства молекулярных структур без применения физических симуляторов, а значит, не требуют значительных вычислительных мощностей.

Один из нейросетевых способов компьютерного моделирования опирается на использование нейросетевых потенциалов (NNP) для предсказания энергии молекулярной конформации. Команда исследователей из AIRI, ФИЦ ИУ РАН, МФТИ и Университета Констрактор в Бремене доказала, что оптимизация с использованием NNP примерно в 2 тысячи раз быстрее, чем оптимизация с помощью DFT-симулятора.

Вместе с тем, учёные выяснили, что нейронные потенциалы, обученные на обычных открытых наборах данных, нельзя использовать для задач оптимизации без дообучения. Чтобы получить качество, сравнимое с физическими симуляторами, необходимо собрать и посчитать энергию для примерно полумиллиона дополнительных конформаций.

С целью уменьшить количество необходимых дополнительных данных при обучении нейронного потенциала, исследователи предложили новый фреймворк под названием GOLF (Gradual Optimization Learning Framework). В его основе лежит активное обучение, в котором, помимо DFT-симулятора, используется суррогатный симулятор на базе простой эмпирической модели молекулярных силовых полей. Эксперименты показали, что нейронный потенциал, обученный с помощью GOLF, имеет такую же точность при в 50 раз меньшем числе дополнительных конформаций. 

Помимо этого, научная группа активно занимается развитием других инструментов, полезных для фармацевтической отрасли. 

Обложка — downloaded from Freepik.

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
ИИ обнаружил два новых гена, которые влияют на риск ишемического инсульта
Наука
Создание изображений в стиле Ghibli привело к рекордной нагрузке на ChatGPT
Новости
Физики МГУ оценили потенциал фотонных процессоров для нейросетей
Новости
Телескоп НАСА для изучения ранней Вселенной сделал первые снимки
Космос
Путин подписал закон против кибермошенничества: что изменится для россиян
Новости
Генератор изображений OpenAI теперь доступен бесплатно, но с ограничениями  
Новости
Apple готовит iOS 19: какие iPhone не получится обновить  
Новости
ЦЕРН представил проект нового коллайдера: что известно прямо сейчас
Наука
На «Госуслугах» запустили сервис для проверки сим-карт: как он работает  
Новости
В России введут маркировку электроники: это изменится для покупателей
Новости
Разработан мозговой имплант, который переводит мысли в речь почти мгновенно
Новости
«Хаббл» зафиксировал драматические сезонные изменения в атмосфере Урана
Космос
Физики МГУ придумали, как ускорить память компьютера терагерцовым излучением
Новости
Клетки жажды: нейробиологи выяснили, как мозг решает, когда нужно пить и есть
Наука
Разработчик ChatGPT анонсировал первую за пять лет модель с открытым кодом
Новости
«Казнить нельзя помиловать»: запятые и точки влияют на точность работы ИИ
Новости
Живые клетки обрабатывают информацию в миллиарды раз быстрее, чем считалось ранее
Наука
Яндекс опубликовал нейросеть YandexGPT 5 Lite в открытом доступе
Новости
Эксперты обсудили управление персоналом в эпоху цифровых технологий
Новости
Роспотребнадзор опроверг информацию о новом опасном вирусе в России
Новости