Разработан аналог МРТ для визуализации частиц меньше атома

Метод поможет изучать материалы на самом фундаментальном уровне, полагают ученые. Результаты исследования опубликованы в журнале Nature Nanotechnology.

Исследователи из Южной Кореи и Германии разработали инструменты, подобный МРТ, для изучения квантовых материалов. Подобно тому, как томограф показывает в высоком разрешении различные ткани человеческого тела, этот квантовый датчик собирает подробную информацию о таких свойствах, как спин электрона или квантовая запутанность.

Принцип работы квантового датчика. Видео: Institute for Basic Science

Разработанный физиками инструмент представляет собой молекулу, прикрепленную к кончику сканирующего туннельного микроскопа. К вершине наконечника ученые прикрепили атомы Fe и молекулу диангидрида перилентетракарбоновой кислоты (PTCDA). Это позволили исследовать атомы с чрезвычайно близкого расстояния.

В испытаниях ученые показали, что инструмент обнаруживает электрические и магнитные поля с пространственным разрешением в 0,1 ангстрема (10⁻¹¹ м). Это примерно в 10 раз меньше диаметра атома водорода.

Для измерения магнитных и электрических полей используют атомы железа и молекулу PTCDA, прикрепленную к наконечнику тунельного микроскопа. Изображение: Institute for Basic Science

Предыдущие попытки разработать датчик квантового масштаба для измерения электрических и магнитных полей основывались на способности обнаруживать дефект в кристаллической решетке. Поскольку они глубоко встроены в материал, датчик всегда находится на значительном расстоянии от исследуемых атомов, а потому его разрешающая способность оставалась низкой.

Что делает это достижение таким поразительным, так это то, что мы используем изысканно спроектированный квантовый объект для разрешения фундаментальных атомных свойств снизу вверх. Предшествующие методы визуализации материалов использовали большие, громоздкие зонды, чтобы попытаться проанализировать крошечные атомные особенности. Вы должны быть маленькими, чтобы видеть малое.

Дмитрий Бородин, научный сотрудник Центра квантовой нанонауки Института фундаментальной науки в Южной Корее и соавтор исследования

Читать далее:

У всех на виду: где искать путешественников во времени

В нашей галактике нашли еще черную дыру: что в ней особенного

Трекер на гигантской акуле случайно записал столкновение с кораблем

На обложке: кадр из демонстрационного видео.

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
Найдены останки римского легионера, которого сурово наказали за предательство
Наука
Новая смелая гипотеза переписывает историю Вселенной
Космос
Эйнштейн был прав: его открытие поможет раскрыть тайну нейтронных звезд
Космос
Гель для защиты от радиации разработали в Европе
Космос
Шаг к созданию мантии-невидимки: ученые добились отрицательного преломления света 
Наука
Telegram выкатил крупное обновление по работе с видео
Новости
Вошел как влитой: в России создали легко интегрируемый аналог Microsoft AD
Технологии
Китайский робопес впервые участвовал в пожарно-спасательной операции
Новости
Таинственные космические огни оказались странными остатками взорвавшихся звезд
Космос
Британский стартап показал робота, который манипулирует руками быстрее человека
Новости
Четвертому пациенту пересадили модифицированную почку свиньи
Наука
Посмотрите на цветные облака, которые плывут в небе над марсоходом «Кьюриосити»
Космос
Инженеры MIT напечатали дешевый двигатель для маленьких спутников
Новости
Началась разработка космического двигателя на воде: что о нем известно
Космос
Через Млечный Путь несется пара объектов на гиперскорости: что о них известно
Космос
Названы опасные побочные эффекты использования ИИ для мозга
Наука
НАСА рискуют провалить главную лунную программу и не только
Кейсы
Прибор для анализа крови без уколов привлек 35 млн рублей от стартап-студии
Наука
«Джеймс Уэбб» рассмотрит астероид, который может угрожать Земле
Космос
Телескоп «Евклид» наблюдал редкое кольцо Эйнштейна в соседней галактике
Космос