Разработан аналог МРТ для визуализации частиц меньше атома

Метод поможет изучать материалы на самом фундаментальном уровне, полагают ученые. Результаты исследования опубликованы в журнале Nature Nanotechnology.

Исследователи из Южной Кореи и Германии разработали инструменты, подобный МРТ, для изучения квантовых материалов. Подобно тому, как томограф показывает в высоком разрешении различные ткани человеческого тела, этот квантовый датчик собирает подробную информацию о таких свойствах, как спин электрона или квантовая запутанность.

Принцип работы квантового датчика. Видео: Institute for Basic Science

Разработанный физиками инструмент представляет собой молекулу, прикрепленную к кончику сканирующего туннельного микроскопа. К вершине наконечника ученые прикрепили атомы Fe и молекулу диангидрида перилентетракарбоновой кислоты (PTCDA). Это позволили исследовать атомы с чрезвычайно близкого расстояния.

В испытаниях ученые показали, что инструмент обнаруживает электрические и магнитные поля с пространственным разрешением в 0,1 ангстрема (10⁻¹¹ м). Это примерно в 10 раз меньше диаметра атома водорода.

Для измерения магнитных и электрических полей используют атомы железа и молекулу PTCDA, прикрепленную к наконечнику тунельного микроскопа. Изображение: Institute for Basic Science

Предыдущие попытки разработать датчик квантового масштаба для измерения электрических и магнитных полей основывались на способности обнаруживать дефект в кристаллической решетке. Поскольку они глубоко встроены в материал, датчик всегда находится на значительном расстоянии от исследуемых атомов, а потому его разрешающая способность оставалась низкой.

Что делает это достижение таким поразительным, так это то, что мы используем изысканно спроектированный квантовый объект для разрешения фундаментальных атомных свойств снизу вверх. Предшествующие методы визуализации материалов использовали большие, громоздкие зонды, чтобы попытаться проанализировать крошечные атомные особенности. Вы должны быть маленькими, чтобы видеть малое.

Дмитрий Бородин, научный сотрудник Центра квантовой нанонауки Института фундаментальной науки в Южной Корее и соавтор исследования

Читать далее:

У всех на виду: где искать путешественников во времени

В нашей галактике нашли еще черную дыру: что в ней особенного

Трекер на гигантской акуле случайно записал столкновение с кораблем

На обложке: кадр из демонстрационного видео.

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
Темные фабрики: будущее промышленности без человека
Мнения
Астрономы открыли рекордно далекую от звезды суперземлю
Космос
Датские ученые омолодили стволовые клетки, изменив их «диету»
Наука
Биологи описали стратегии любви у мышей: защищаться или «странствовать»
Наука
Якутские инженеры создали боевого «Скорпиона» для битвы роботов
Новости
Количество DDoS-атак удвоилось в первом квартале 2025 года
Новости
Сдвиг поверхности земли при землетрясении зафиксировали из космоса
Космос
Не так уж жарко: выяснилось, какая погода была на Марсе в прошлом
Космос
Целый океан исчез на Земле: как это изменило историю нашей планеты
Наука
Минцифры запускает эксперимент с ИИ на «Госуслугах»: что он будет делать
Новости
Сжигать жир можно с помощью мыслей: как это работает
Наука
Маркетплейсы превратили шопинг в зависимость: как не потратить свои деньги
Наука
ChatGPT научили материться, как сантехника Валеру из Омска
Новости
Написать научный труд в эпоху нейросетей: как сделать ИИ помощником?
Мнения
Следы «долгожданной» черной дыры нашли в соседней галактике
Космос
В Анапе испытали устройство для сбора мазута со дна моря
Наука
Филиппинские физики создали дешевые жидкие линзы из обычной воды
Наука
Perplexity вслед за OpenAI заявила в суде о желании приобрести Chrome
Новости
В МГУ разработали математическую модель для предотвращения давки
Наука
Посмотрите на самое подробное изображение Солнца, сделанное зондом Solar Orbiter
Космос