Исследователи из Facebook научились обманывать ИИ
Кейсы 31 июля 2017

Исследователи из Facebook научились обманывать ИИ

Далее

Искусственный интеллект способен довольно точно определять объекты или распознавать слова, но его алгоритмы отличаются от человеческого мозга, а это значит, что ИИ можно легко обмануть, пишет MIT Technology Review.

Ученые из университета Бар-Илан в Израиле и команда по ИИ в Facebook с помощью тонкой настройки аудиоклипов, не замечаемой для человеческого слуха, смогли полностью запутать ИИ-программу. Для этого необходимо добавить слой тихого шума к звуковой дорожке, содержащий шаблоны, которые нейронная сеть будет ассоциировать с другими словами.

Исследователи применил новый алгоритм по названием Гудини к серии звуковых клипов, которые затем пропустили через Google Voice.

Эпоха «дикого Запада» для криптовалют закончилась

Разработка ученых может применяться и к другим алгоритмам машинного обучения. Изменяя изображения людей, можно путать ИИ, определяющий человеческую позу, что человек на самом деле сидит иначе. А, добавив шумы к изображению дорожной сцены, команда смогла обмануть ИИ, используемый в робомобилях, который вместо дорожных знаков стал видеть «миньонов».

Эти полухакерские разработки ученых могут показаться странной областью исследований, но их можно использовать для стресс-тестов алгоритмов машинного обучения. Хотя, конечно, это означает, что обманывать ИИ смогут и недобросовестные люди, например, с целью «убедить» ИИ в Tesla иначе считывать дорогу, обходить дорожные камеры, или «хакнуть» Alexa, чтобы тот воспринимал ложные звуковые команды. Однако подобные «подделки» в дикой природе проще и отличаются от тех, что были созданы в сложных лабораторных условиях.

Самое интересное, что защитить ИИ от подобных «трюков» довольно сложно. Мы действительно пока плохо понимаем внутреннее устройство нейронных сетей, а это значит, что мы также не понимаем, почему они так восприимчивы к малейшим изменениям в аудиоклипах и изображениях.

Google занялась термоядерным синтезом

В Google создают самовоспроизводящийся искусственный интеллект. Аналогичными разработками занимаются в OpenAI, MIT, университетах Калифорнии и Беркли. Если ИИ научится проектировать алгоритмы на основе машинного обучения, внедрение ИИ во все сферы жизни заметно ускорится.