Глубокую нейронную сеть научили меньше чем за минуту определять тип рака легкого с точностью медэксперта

Команда исследователей из Дартмутского центра рака Норриса Коттона представила нейронную сеть, которая с помощью машинного обучения научилась определять вид рака легкого с точностью медэксперта. Об этом пишет «EurekAlert!».

Перед исследователями Дартмутского центра стояла задача классифицировать опухолевые паттерны и подтипы аденокарциномы легкого — самой распространенной формы рака легкого и основной причины смертности от рака во всем мире.

В настоящее время аденокарцинома легкого требует визуального осмотра слайдов лобэктомии со стороны патолога для определения характера и подтипа опухоли. Эта классификация играет важную роль в прогнозировании и определении лечения рака легких, однако является сложной и субъективной задачей. Используя последние достижения в области машинного обучения, команда, возглавляемая доктором наук Саидом Хассанпуром, разработала глубокую нейронную сеть для классификации различных типов аденокарциномы легкого на слайдах по гистопатологии и обнаружила, что модель работает с той же точностью, что и врач-патолог — результаты нейросети сравнили с результатами работы трех практикующих патологов.

«Наше исследование демонстрирует, что машинное обучение может достичь высокой производительности в сложной задаче классификации изображений и потенциально может быть полезным для лечения рака легких, — утверждает Хассанпур. — Клиническое внедрение нашей системы поможет патологам в точной классификации подтипов рака легких, что имеет решающее значение для прогноза и лечения».

С учетом того, что этот подход потенциально применим к другим задачам анализа гистопатологических изображений, команда Хассанпура сделала их код общедоступным для продвижения новых исследований и сотрудничества в этой области.

Команда исследователей также планирует применить этот метод для решения других сложных задач анализа гистопатологических изображений при раке молочной железы, пищевода и колоректального рака. «Если это будет подтверждено клиническими испытаниями, наша модель нейронной сети потенциально может быть внедрена в клиническую практику для оказания помощи патологам, — говорит Хассанпур. — Наш метод машинного обучения быстр и может обрабатывать слайды менее чем за одну минуту, поэтому он может помочь сортировать пациентов перед обследованием у врачей и потенциально значительно помочь патологам в визуальном осмотре слайдов».

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
Чрезвычайно молодую планету нашли у звезды с «кривым» диском
Космос
Предложен способ навигации дронов без GPS: по «отпечаткам рельефа»
Новости
Ученые раскрыли тайну гигантских черных дыр ранней Вселенной
Космос
Microsoft и Atom Computing выпустят коммерческий квантовый компьютер в 2025 году
Новости
Создан робот-голубь, который летает как настоящая птица
Наука
На страницах тысячелетнего Голубого Корана нашли скрытый текст
Наука
Уязвимость ИИ: типы атак LLM-injection и способы защиты от них
Технологии
Intel случайно упомянула о планах по разработке ИИ-ускорителя
Новости
S.T.A.L.K.E.R. 2: Heart of Chornobyl вышел спустя 15 лет: цены, патчи, бесплатный контент и концовка
Новости
Посмотрите, как прототип космоплана Aurora разогнали до 1,1 Маха 
Новости
Российских айтишников обяжут преподавать в вузах: кого это коснется
Новости
Киберспорт в России сегодня: плюсы и минусы разных бизнес-моделей
Мнения
Одинокого дельфина нашли в Балтийском море: он «разговаривает» сам с собой
Наука
Физики обнаружили сразу три формы хаоса
Наука
Российского хакера экстрадировали в США за создание вируса-вымогателя
Новости
Ученые впервые раскрыли форму короны черной дыры
Космос
Названы сроки запуска аналога Apple Pay в России
Новости
В России придумали, как искать телефонных мошенников по голосу
Новости
Лазерную связь в космосе предложили использовать, чтобы фотографировать черные дыры
Космос
Чат-бот Google научили запоминать пользователей
Новости