Конденсаты Бозе-Эйнштейна, существование которых было предсказано Альбертом Эйнштейном и индийским математиком Сатьендрой Нат Бозе почти столетие назад, образуются, когда атомы некоторых элементов охлаждаются почти до абсолютного нуля — это –273,15°C. В таком сильно охлаждённом состоянии достаточно большое число атомов оказывается в своих минимально возможных квантовых состояниях и квантовые эффекты начинают проявляться на макроскопическом уровне.
Ученые полагают, что конденсаты Бозе-Эйнштейна содержат жизненно важные ключи к таинственным явлениям, таким как темная энергия — неизвестная энергия, которая, как считается, стоит за ускоряющимся расширением Вселенной.
Но при этом они чрезвычайно хрупки. Малейшего взаимодействия с внешним миром достаточно, чтобы прогреть их выше порога конденсации. Это делает их почти невозможными для ученых для изучения на Земле, где гравитация мешает магнитным полям, необходимым для удержания их на месте для наблюдения.
Команда ученых НАСА обнародовала первые результаты экспериментов с конденсатом Бозе-Эйнштейна на МКС, где частицы могут управляться без ограничений, связанных с Землей.
«Микрогравитация позволяет нам ограничивать атомы гораздо более слабыми силами, поскольку нам не нужно поддерживать их против силы тяжести»
Роберт Томпсон из Калифорнийского технологического института в Пасадене.
Исследование документирует несколько поразительных различий в свойствах конденсатов Бозе-Эйнштейна, созданных на Земле, и тех, которые находятся на борту МКС. Это состояние в наземных лабораториях обычно длится несколько миллисекунд перед рассеянием. На борту МКС это состояние продолжалось более секунды, предлагая команде беспрецедентный шанс изучить их свойства. Микрогравитация также позволяла атомам манипулировать более слабыми магнитными полями, ускоряя их охлаждение и позволяя получать более четкие изображения.
Создание пятого состояния материи, особенно в пределах физического пространства космической станции — важное событие. Во-первых, бозоны — частицы, которые имеют равное количество протонов и электронов — охлаждают до почти абсолютного нуля, используя лазеры, чтобы закрепить их на месте. Чем медленнее движутся атомы, тем холоднее они становятся.
Когда они теряют тепло, создается магнитное поле, которое не дает им двигаться, и волна каждой частицы расширяется. Превращение многих бозонов в микроскопическую «ловушку», которая заставляет их волны перекрываться в одну волну материи — свойство, известное как квантовое вырождение.
Во-вторых, магнитная ловушка освобождается для того, чтобы ученые исследовали конденсат, однако атомы начинают отталкивать друг друга, в результате чего облако разлетается на части, и конденсат Бозе-Эйнштейна становится слишком «разбавленным», чтобы его можно было обнаружить.
Микрогравитация на борту МКС позволила ученым создать конденсат Бозе-Эйнштейна из рубидия — мягкого металла, похожего на калий — в гораздо более маленькой «ловушке», чем на Земле. Это объясняет значительно увеличенное время, в течение которого конденсат может быть исследован до диффузии.
Предыдущие исследования, пытавшиеся имитировать влияние невесомости на конденсат Бозе-Эйнштейна, использовали самолеты в свободном падении, ракеты и даже аппараты, сбрасываемые с разной высоты.
Область применения конденсатов Бозе-Эйнштейна и объяснение их варьируется от испытаний общей теории относительности и поиска темной энергии и гравитационных волн до навигации космических аппаратов и поиска подземных минералов на Луне и других планетных телах.
Читать также:
→ Женская яйцеклетка умеет «выбирать» сперматозоиды: ее обладательница тут ни при чем.
→ Астрономы нашли планету, похожую на Землю. Она вращается вокруг звезды, похожей на Солнце.