Ученые смогли перфорировать поверхности в атомном масштабе

Никто не может выстрелить из обычного пистолета в банан так, чтобы его кожа была перфорирована, а мякоть осталась нетронутой. Однако на уровне отдельных атомных слоев такой подвиг в настоящее время достигнут — метод наноструктурирования был разработан учеными из Технического университета Вены (TU Wien). С помощью него определенные слои материала могут быть перфорированы чрезвычайно точно, а другие остаются совершенно нетронутыми, даже если снаряд проникает во все слои. Это стало возможным благодаря высоко заряженным ионам. Их можно использовать для выборочной обработки поверхностей новых систем 2D-материалов, например, для закрепления на них определенных металлов, которые затем могут служить катализаторами. Новый метод опубликован в журнале ACS Nano.

Материалы, которые состоят из нескольких ультратонких слоев, — новая захватывающая область исследования. С тех пор, как впервые был изготовлен высокопроизводительный материал графен, который состоит только из одного слоя атомов углерода, было разработано много новых тонкопленочных материалов, часто с многообещающими новыми свойствами.

Ученые исследовали комбинацию графена и дисульфида молибдена. Два слоя материала вступают в контакт, а затем прилипают друг к другу под действием слабых сил Ван-дер-Ваальса. Графен — очень хороший проводник, дисульфид молибдена — полупроводник, и эта комбинация может быть интересна для производства новых типов устройств хранения данных, заявляют ученые.

Однако для определенных применений геометрия материала должна быть специально обработана в масштабе нанометров — например, для изменения химических свойств путем добавления дополнительных типов атомов или для контроля оптических свойств поверхности. Можно модифицировать поверхности с помощью электронного пучка или обычного ионного пучка. Однако в двухслойной системе всегда существует проблема — пучок ионов воздействует на оба слоя одновременно, даже если в задаче стоит изменить лишь один слой.

Когда ионный пучок используется для обработки поверхности, обычно сила удара ионов влияет на материал. Однако новом методе ученых используются относительно медленные ионы, которые многозарядны.

«Здесь необходимо различать две разные формы энергии. С одной стороны, существует кинетическая энергия, которая зависит от скорости, с которой ионы воздействуют на поверхность. С другой стороны, существует потенциальная энергия, которая определяется электрическим зарядом ионов. В пучках ионов кинетическая энергия играет решающую роль, но для ученых особенно важна именно потенциальная.

Существует важное различие между этими двумя формами энергии: в то время как кинетическая энергия выделяется в обоих слоях материала при проникновении в систему слоев, потенциальная может распределяться очень неравномерно между слоями.

Дисульфид молибдена очень сильно реагирует на сильно заряженные ионы. Один ион, попадающий в этот слой, может удалить десятки или сотни атомов из слоя. Остается лишь дыра, которую очень хорошо видно под электронным микроскопом. С другой стороны, слой графена, в который снаряд попадает сразу после удара, остается неповрежденным: большая часть потенциальной энергии уже выпущена.

Тот же эксперимент можно также обратить вспять. Сильно заряженный ион сначала попадает на графен, а затем — на слой дисульфида молибдена. В этом случае оба слоя остаются неповрежденными: графен обеспечивает ион электронами, необходимыми для его электрической нейтрализации за доли секунды. Подвижность электронов в графене настолько высока, что точка удара также немедленно «остывает». Ион пересекает графеновый слой, не оставляя постоянного следа. После этого он больше не может вызывать значительных повреждений в слое дисульфида молибдена.

Это дает ученым новый метод целенаправленного управления поверхностями. Появилась возможность добавлять нанопоры на поверхности, не повреждая материал подложки под ним. Это поможет создавать геометрические структуры, которые раньше были невозможны. Можно создать «маски» из дисульфида молибдена, перфорированного точно по желанию, на который затем наносятся определенные атомы металла. Это открывает совершенно новые возможности для контроля химических, электронных и оптических свойств поверхности.

Читать также

Астрономы нашли лучшее место на Земле для телескопа

В Испании и Великобритании зафиксировали рекордно высокую температуру

Германия запретила одноразовые пластиковые трубочки, приборы и посуду

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
В мозге человека нашли «нейронный компас», который помогает определять направление
Наука
Электричество получили из влаги в воздухе с помощью бактериальных «проводов»
Наука
Разработана вакцина, которая защищает от коронавирусов будущего
COVID-19
Ограничения в работе TikTok не повлияли на популярность социальной сети
Новости
Исчезновение «щита» от солнечной радиации совпало с рассветом жизни на Земле 590 млн лет назад
Наука
Крошечные «бессмертные» черные дыры могут заполнять Вселенную и объяснять темную материю
Наука
Ученые впервые наблюдали, как орангутанг занимается самолечением
Наука
SpaceX не смогла скрыть полет ракеты над Россией: в сети публикуют фото
Космос
Зонд «Эйнштейн» показал первую партию редких космических фото
Космос
Миссию по доставке образцов с загадочной стороны Луны запустили в Китае
Наука
Ученые подтвердили ключевые события из Библии
Наука
Недалеко от нас есть планета, где ветер дует быстрее пули
Космос
Найден необычный способ бороться с хроническим стрессом
Наука
Посмотрите на самый редкий торнадо, который пронесся над США
Наука
Над Землей пролетел астероид, который вращался быстрее всех остальных
Космос
Ученые показали лицо женщины, которая жила 75 000 лет назад
Наука
Анализ генов показал, как древние водоросли вышли на поверхность планеты
Наука
Древняя технология поможет вырастить растения на Марсе, считают ученые
Космос
Физики из MIT добились рекордной близости между атомами для квантовых исследований
Наука
В Германии на ветряную электростанцию впервые установили деревянные лопасти
Новости