Обычно этот процесс разделения CO2 требует огромных затрат энергии. Однако в первом вычислительном исследовании такого рода Шаама Шарада, доцент WISE Gabilan и ее команда решили использовать Солнце как помощника в этом процессе.
В частности, они продемонстрировали, что ультрафиолетовый свет может быть очень эффективным для возбуждения органической молекулы олигофенилена. Под воздействием УФ-излучения олигофенилен становится отрицательно заряженным анионом, легко переносящим электроны на ближайшую молекулу, такую как CO2. Таким образом углекислый газ становится способным восстанавливаться и превращаться в составную часть пластмасс, лекарств или даже мебели.
«CO2, как известно, трудно сократить, поэтому он десятилетиями живет в атмосфере. Но этот отрицательно заряженный анион способен восстанавливать даже такой стабильный продукт, как CO2, поэтому он многообещающий и поэтому мы изучаем его.
Шаама Шарада, доцент WISE Gabilan
Быстро растущая концентрация углекислого газа в атмосфере Земли — одна из самых неотложных проблем, которые человечество должно решить, чтобы избежать климатической катастрофы.
С начала индустриальной эры люди увеличили выбросы CO2 в атмосфере на 45% за счет сжигания ископаемого топлива и других выбросов. В результате средние глобальные температуры сейчас на два градуса Цельсия выше, чем в доиндустриальную эпоху. Благодаря парниковым газам, таким как CO2, солнечное тепло остается в атмосфере, нагревая нашу планету.
Многие исследовательские группы изучают методы преобразования CO2, улавливаемого выбросами, в топливо или углеродное сырье для потребительских товаров, от фармацевтических препаратов до полимеров.
В этом процессе традиционно используется тепло или электричество вместе с катализатором для ускорения превращения CO2 в продукты. Однако многие из этих методов часто являются энергоемкими, что не идеально для процесса, направленного на снижение воздействия на окружающую среду. Использование солнечного света для возбуждения молекулы катализатора в свою очередь энергоэффективно.
«Большинство других способов сделать это включают использование химических веществ на основе металлов, и эти металлы являются редкоземельными металлами», — сказала Шарада. «Они могут быть дорогими, их трудно найти, и они потенциально могут быть токсичными».
Эта работа была первым вычислительным исследованием подобного рода, поскольку ученые ранее не изучали основной механизм перемещения электрона от органической молекулы, такой как олигофенилен, к CO2. Команда обнаружила, что они могут проводить систематические модификации олигофениленового катализатора, добавляя группы атомов, которые придают определенные свойства при связывании с молекулами, которые имеют тенденцию подталкивать электроны к центру катализатора, чтобы ускорить реакцию.
Сейчас команда изучает стратегии дизайна катализаторов, которые не только приводят к высокой скорости реакции, но также позволяют возбуждать молекулу видимым светом, используя как квантовую химию, так и генетические алгоритмы.
Читать также
Ореол Андромеды приближается к нашей галактике. Рассказываем, почему это важно
Симптомы коронавируса у детей. На что стоит обратить внимание?
Выяснилось, что заставило цивилизацию майя покинуть свои города