ИИ на 50% оптимизировал маршруты в картах Google

Компания DeepMind, с помощью специальной модели искусственного интеллекта, улучшила расчет времени в пути на 50%. Также алгоритм поможет оптимизировать путь водителя и сделать его быстрее.

Компания DeepMind, с помощью своей модели искусственного интеллекта (ИИ), улучшила навигацию в картах Google — по словам инженеров, они сделали расчет времени передвижений точнее на 50%. Эксперименты проводились сразу в нескольких регионах, включая Берлин, Джакарту, Сан-Паулу, Сидней, Токио и Вашингтон. Благодаря использованию методов машинного обучения, они смогли уменьшить погрешности прогнозирования движения, включив реляционное обучение, которое моделирует дорожные сети.

Google Maps анализирует трафик в реальном времени на дорогах по всему миру, однако оно не использует многие вводные — нагрузку на дороги, среднюю скорость передвижения на конкретном участке и прочие.  Машинное обучение позволяет Google Maps сочетать условия дорожного движения с историческими моделями дорог по всему миру. Для достижения этой цели компания DeepMind разработала нейронные сети графиков, которая проводит пространственно-временные рассуждения.

Вся эта информация поступает в нейронные сети, разработанные DeepMind, которые выбирают закономерности в данных и используют их для прогнозирования будущего трафика. Google говорит, что ее новые модели улучшили точность прогнозирования, однако в будущем она станет еще точнее. При этом данные автоматически будут коррелироваться, для них не нужна помощь исследователей.

Модели работают путем разделения карт на то, что Google называет «суперсегментами» — общим трафиком соседних дорог. При этом каждый из них соединен с индивидуальной нейронной сетью, которая делает прогноз интенсивности движения для конкретного сектора. Неизвестно, насколько велики эти «суперсегменты», но Google отмечает, что они имеют «динамические размеры», для каждой из них используется террабаты данных. Уникальность подхода в том, что для этого используется специальная нейросеть, которая хорошо подходит для анализа картографических данных.


Читайте также:

— Ореол Андромеды приближается к нашей галактике. Рассказываем, почему это важно

— Симптомы коронавируса у детей. На что стоит обратить внимание?

— Разработана уникальная молекула для хранения солнечной энергии

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
«Википедия» внедрит ИИ: это будет работать и что станет с редакторами
Новости
Поднимет и авианосец: для реактора ИТЭР сделали мощнейший магнит в мире
Наука
Посмотрите на маневренный дрон с крыльями, как у белки-летяги
Новости
Недалеко от Земли нашли странную группу молодых звезд, стремящихся разлететься в разные стороны
Космос
Летучие мыши учатся подслушивать за сексом лягушек, чтобы выбрать добычу
Наука
В МФТИ разработана технология для создания долговечной памяти электронных устройств
Наука
Зонд «Юнона» рассмотрел холодный северный полюс Юпитера
Космос
Роботы-собаки Unitree стреляют водой на 60 метров, чтобы тушить пожары
Новости
Самки бонобо научились держать самцов «в узде»: как им удалось
Наука
Снайперы застрелили с вертолетов 700 коал: власти Австралии объяснили, зачем это сделали
Наука
Бесплатную смену по подготовке к ЕГЭ проведут в Университете Иннополис 
Новости
Назван неожиданный напиток, который может снизить риск остановки сердца
Наука
Эффективность российской вакцины от пыльцы проверят уже в этом году
Наука
Назван необычный побочный эффект вакцин от гриппа: он встречается у женщин
Наука
Большой Ку: тестируем бюджетный QLED-TV с огромной диагональю
Технологии
Посмотрите на первый полет МС-21 с новыми российскими системами
Новости
Натрий-ионные аккумуляторы: плюсы и ограничения технологии
Технологии
Amazon запустил первые спутники для альтернативы Starlink
Космос
Зонд НАСА ищет темную материю в короне Солнца
Космос
Ученые выяснили, как мозг детей с аутизмом обрабатывает звуки
Наука