Создан инструмент, который помогает устранить предвзятость компьютерного зрения

Исследователи из Принстонского университета разработали инструмент, который выявляет потенциальные предубеждения в наборах изображений, используемых для обучения систем искусственного интеллекта. Работа является частью более масштабного проекта по исправлению и предотвращению предубеждений, проникших в системы ИИ, которые влияют на все — от кредитных услуг до программ вынесения приговоров в зале суда.

Хотя источники предвзятости в системах ИИ разнообразны, одной из ее основных причин являются стереотипные изображения, содержащиеся в больших наборах данных, собранных из онлайн-источников, которые инженеры используют для развития компьютерного зрения. Это ветвь ИИ, которая позволяет компьютерам распознавать людей, объекты и действия. Поскольку фундамент компьютерного зрения строится на этих наборах данных, изображения, отражающие социальные стереотипы и предубеждения, могут непреднамеренно влиять на модели компьютерного зрения.

Чтобы помочь устранить эту проблему в ее первоисточнике, исследователи из Princeton Visual AI Lab разработали инструмент с открытым исходным кодом, который автоматически обнаруживает потенциальные искажения в наборах визуальных данных. Инструмент позволяет создателям наборов данных и пользователям исправлять проблемы недопредставленности или стереотипного изображения до того, как коллекции изображений будут использоваться для обучения моделей компьютерного зрения. В соответствующей работе члены Visual AI Lab опубликовали сравнение существующих методов предотвращения предвзятости в самих моделях компьютерного зрения и предложили новый, более эффективный подход к снижению предвзятости .

Первый инструмент, называемый REVISE, использует статистические методы для проверки набора данных на предмет потенциальных предубеждений или проблем недопредставленности по трем измерениям: объектному, гендерному и географическому. 

REVISE оценивает содержимое набора данных, используя существующие аннотации к изображениям и такие измерения, как количество объектов, совместное присутствие объектов и людей, а также страны происхождения изображений. Среди этих измерений инструмент выявляет закономерности, которые отличаются от медианного распределения.

В одном наборе данных REVISE выявил потенциальную гендерную предвзятость в изображениях, на которых изображены люди (красные прямоугольники) и орган музыкального инструмента (синие прямоугольники). Анализ распределения предполагаемых трехмерных расстояний между человеком и органом показал, что мужчины, как правило, изображались как фактически играющие на инструменте, тогда как женщины часто просто находились в том же пространстве, что и инструмент. Предоставлено: Princeton Visual AI Lab.

Например, в одном из протестированных наборов данных REVISE показал, что изображения, включающие людей и цветы, различались у мужчин и женщин: мужчины чаще появлялись с цветами на церемониях или встречах, а женщины, как правило, появлялись в постановочных декорациях или картинах. 

Как только инструмент выявляет такого рода несоответствия, «возникает вопрос, является ли это совершенно безобидным фактом или происходит нечто более важное, и это очень трудно автоматизировать», — объясняет Ольга Русаковская, доцент кафедры информатики и главный исследователь Visual AI Lab. 

«Практика сбора наборов данных в компьютерных науках до недавнего времени не изучалась так тщательно», — заключает соавтор исследования Анджелина Ван, аспирантка в области компьютерных наук. Она объясняет, что изображения в основном «берутся из Интернета, и люди не всегда понимают, что их изображения используются [в наборах данных]. Мы должны собирать изображения от более разных групп людей и делаем это уважительно».

Читать также:

Создать термоядерный реактор на Земле реально. Какие будут последствия?

Ледник «Судного дня» оказался опаснее, чем думали ученые. Рассказываем главное

На 3 день болезни большинство больных COVID-19 теряют обоняние и часто страдают насморком

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
Источник в СМИ назвал возможную причину сбоя рунета
Новости
Мошенники начали выдавать себя за начальников в рабочих чатах: как это работает
Новости
Холодные атомы этого металла могут создавать новые состояния материи
Наука
Древние артефакты в Украине раскрыли тайны навигации викингов
Наука
Послушайте, как звучат вспышки на Солнце: данные собрал Solar Orbiter  
Космос
Тяжелый беспилотник на водородных топливных ячейках впервые испытали в Китае
Новости
Ученые создали катализатор, который нарушает законы физики
Наука
Физики обнаружили необычные магнитные свойства в трехслойном графене
Наука
Биоинженеры создали ДНК-робота, который может менять форму искусственной клетки
Наука
«Горы» на нейтронных звездах могут вызывать рябь в пространстве-времени
Космос
На телах древних мумий из Перу нашли сложные узоры татуировок
Наука
У черной дыры прячется белый карлик, движущийся с половиной скорости света
Космос
Стартап из России разрабатывает нанопротез для восстановления поврежденных нервов
Наука
Генетики разгадали секреты выживания устойчивой к антибиотикам бактерии
Наука
Астрофизики разгадали тайну космических ускорителей частиц
Космос
Илон Маск: Neuralink поставил мозговой имплант третьему пациенту
Новости
В Китае дроны вызвали снегопад в горах, чтобы решить проблему с недостатком воды
Новости
«Сестра Клеопатры» оказалась римским больным подростком
Наука
2024 год стал самым жарким за полтора века: впервые превышен предел в 1,5°С
Наука
Юпитер оказался не таким, как считали ученые: открытие опровергает гипотезу о гиганте
Космос