Новый алгоритм находит незаконную вырубку леса по снимкам из космоса

Институт ИИ российского ИТ-вуза совместно с компанией «Инногеотех» и Министерством природных ресурсов, лесного хозяйства и экологии Пермского края разработал подсистему мониторинга лесоизменений для системы «Умный лес». Сервис отслеживает незаконные вырубки, пожары и другие изменения. Об этом «Хайтеку» сообщили в пресс-службе Университета Иннополис.

Ранее в 2020 году подсистему мониторинга лесоизменений апробировали в тестовом режиме на всей территории лесного фонда Пермского края. Цель — выявить незаконные вырубки. За это время было выявлено 679 объектов с лесоизменениями, проведена верификация объектов изменений лесничествами Пермского края. Подсистема показала высокую точность и оперативность и сейчас её готовятся полностью интегрировать в РГИС «Умный лес».

По словам Михаила Никитина, начальника управления охраны, защиты и надзора в лесах Министерства природных ресурсов, лесного хозяйства и экологии Пермского края, система повышает эффективность контрольно-надзорной деятельности в регионе. Кроме того, она снижает затраты на патрулирование за счет оптимизации обследований лесного фонда. Реагировать на конкретные сигналы, отображаемые на карте гораздо проще и быстрее. Благодаря этому находится все больше объектов с предполагаемыми нарушениями. Данные подсистемы в будущем можно будет использовать как доказательную базу в контрольно-надзорной деятельности и судах.

Разработчики Университета Иннополис и компании «Инногеотех» создали алгоритм, который нивелирует характерную для нейросетей проблему пропусков маленьких объектов: алгоритмы определения вырубок работают с объектами размером от 3*3 пикселя. Также была решена проблема наличия дымки от облаков на изображениях — алгоритмы автоматически отличают дымку на небе от лесоизменений, раньше для этого проводилась дополнительная обработка. Алгоритмы работают летом и зимой со снимками с космоаппаратов Landsat 8 и Sentinel 2.

«Сервис мониторинга лесоизменений автоматически загружает данные космосъёмки с еженедельной периодичностью. Современные технологии обработки изображений и глубокого обучения позволяют эффективно решать задачи, которые несколько лет назад казались невыполнимыми —подчеркиает Рамиль Кулеев, директор Института искусственного интеллекта Университета Иннополис — Направление разработок для лесной отрасли для нас является очень важным, мы видим перспективу в решении задач по автоматической таксации леса, комплексированию различных источников данных — космосъёмка, лидарная съемка и съемка с беспилотников, прогнозированию развития негативных ситуаций, в том числе чрезвычайных — пожары, усыхания леса».

«Мы в 2 раза — до 0,1 га — снизили минимальную площадь детектируемых лесоизменений. Благодаря большому объему эталонной выборки наша нейронная сеть в настоящее время детектирует вырубки на снимках с облаками и тенями от облаков — объясняет Дмитрий Шевелев, руководитель проекта цифровизации лесной отрасли Университета Иннополис. — До этого нам приходилось вырезать облака на снимках, либо использовать безоблачные снимки. Также мы продолжаем работать над расширением базы источников космических снимков. Сейчас подсистема дорабатывается в части использования данных с отечественных спутников Ресурс-П и Канопус-В».

На территории Пермского края под непрерывный мониторинг попадут 12,4 млн га лесного фонда. До этого разработчики Университета Иннополис внедрили технологию на территории Республики Татарстан, в автоматизированном режиме она мониторит леса на территории 1,2 млн га — 31 лесничество республики. Сервис при помощи технологии искусственного интеллекта анализирует космоснимки, полученные со спутников Земли, предобрабатывает их и отправляет результаты нейронным сетям, сети делают сегментацию этих изображений и выдают вектор с полигонами. Этот сервис разработан в рамках создания Комплексной системы дистанционного мониторинга Приволжского федерального округа, которая также проводит мониторинг сельскохозяйственных земель, объектами инфраструктуры и капитального строительства, процессов обработки отходов.

«Опыт работы на территории Республики Татарстан и Пермского края даёт нам возможность апробировать работу сервиса мониторинга лесного фонда на больших территориях. Мы видим, что благодаря проведенной работе и непрерывному совершенствованию сервис уже сейчас может масштабироваться на большие территории, в ближайшей перспективе покрыв весь лесной фонд России» — заключает Дмитрий Шевелев.

Читайте также

Аборты и наука: что будет с детьми, которых родят

Посмотрите на самые красивые снимки «Хаббла». Что увидел телескоп за 30 лет?

НАСА опубликовало фото Земли с Луны, которое сняли в 1968 году

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
Физики придумали, как раскрыть тайну темной материи
Космос
Ученые рассказали, как экстремальный холод влияет на сон
Наука
Марсианский метеорит раскрыл тайны воды на Красной планете
Космос
Хакеры удаленно взломали компьютер, используя соседний Wi-Fi
Новости
«Уэбб» заснял три огромные «невозможные» галактики
Космос
Телескоп запечатлел столкновение галактик на скорости 3,2 млн км/ч
Космос
Укус вместо укола: создана вакцина от малярии, распространяемая комарами
Наука
Физики определили форму отдельного фотона
Наука
Создатели ChatGPT планируют выпустить собственный браузер
Новости
Плотность промышленных роботов в мире удвоилась за семь лет
Новости
В Гибралтаре нашли «фабрику», на которой неандертальцы варили клей
Наука
Nvidia раскрыла, какие товары компании будут в дефиците и когда
Новости
Посмотрите на первое в истории фото звезды из другой галактики
Космос
Чрезвычайно молодую планету нашли у звезды с «кривым» диском
Космос
Предложен способ навигации дронов без GPS: по «отпечаткам рельефа»
Новости
Ученые раскрыли тайну гигантских черных дыр ранней Вселенной
Космос
Microsoft и Atom Computing выпустят коммерческий квантовый компьютер в 2025 году
Новости
Создан робот-голубь, который летает как настоящая птица
Наука
На страницах тысячелетнего Голубого Корана нашли скрытый текст
Наука
Уязвимость ИИ: типы атак LLM-injection и способы защиты от них
Технологии