Самосборка молекул широко распространена в природе, служа способом формирования организованных структур в каждом живом организме. Это явление можно увидеть, например, когда две нити ДНК — без какого-либо внешнего толчка или направления — соединяются, образуя двойную спираль. Или, например, когда большое количество молекул объединяется, чтобы создать мембраны или другие жизненно важные клеточные структуры.
Последние пару десятилетий ученые и инженеры следуют примеру природы, создавая молекулы, которые собираются самостоятельно, например, в воде. Цель — создание наноструктур, в первую очередь, в биомедицинской сфере.
Команда ученых из Массачусетского технологического института (MIT) разработала новый класс малых молекул, которые спонтанно собираются в наноленты с беспрецедентной прочностью, сохраняя свою структуру вне воды.
Обычно самосборные структуры моделируются по образцу клеточной мембраны. Их внешняя часть отличается гидрофильными свойствами, а внутренняя — гидрофобными. Конфигурация, основанная на радикально разных процессах, и обеспечивает движущую силу для самосборки. Однако вне воды такая конструкция распадается.
Новый дизайн молекулы, созданной в Массачусетском технологическом институте, состоит из трех основных компонентов: внешней гидрофильной части, которая «любит» взаимодействовать с водой, арамидов в середине для связывания и внутренней гидрофобной части с ее «отвращением» к воде. По словам ученых, он вдохновлен строением кевлара. Арамиды в структуре обеспечивают его химическую стабильность и прочность.
Исследователи протестировали десятки молекул, отвечающих этим критериям, прежде чем нашли конструкцию, которая привела к созданию длинных лент с толщиной в нанометровом масштабе. Затем авторы измерили их прочность и жесткость, чтобы понять влияние включения кевларового взаимодействия между молекулами. Они обнаружили, что такие нановолокна оказались неожиданно прочными — прочнее даже стали.
Это открытие заставило авторов задуматься, можно ли связать наноленты в связку для получения стабильных макроскопических материалов. Выровненные волокна стягивались в длинные нити, которые можно было сушить и обрабатывать. Оказалось, они способны удерживать вес в 200 раз превышающий их собственный.
Читать далее
Аборты и наука: что будет с детьми, которых родят
Радары обнаружили последний форт тлинкитов на Аляске. Его искали более 100 лет
Треть переболевших COVID-19 возвращаются в больницу. Каждый восьмой — умирает
Арамид — длинная цепочка синтетического полиамида, в которой, по меньшей мере, 85% амидных связей прикреплены непосредственно к двум ароматическим кольцам. Свойства арамидных волокон определяются одновременно и химической, и физической микроструктурой.
Кевлар — пара-арамидное волокно, выпускаемое фирмой DuPont. Кевлар обладает высокой прочностью. Впервые кевлар был получен группой Стефани Кволек — американского химика и сотрудницы фирмы DuPont в 1964 году, технология производства разработана в 1965 году, с начала 1970-х годов начато промышленное производство.