Ученые раскрыли, как возникают самые тяжелые элементы во Вселенной

Группа международных исследователей вернулась к формированию Солнечной системы 4,6 миллиарда лет назад, чтобы по-новому взглянуть на космическое происхождение самых тяжелых элементов. И обнаружила, как именно же они образовались и во время какого процесса.

Тяжелые элементы, с которыми мы сталкиваемся в нашей повседневной жизни, такие как железо и серебро, не существовали в начале Вселенной 13,7 миллиарда лет назад. Они были созданы во времени в результате ядерных реакций, называемых нуклеосинтезом, которые объединили атомы вместе. В частности, йод, золото, платина, уран, плутоний и кюрий — некоторые из самых тяжелых элементов — были созданы с помощью особого типа нуклеосинтеза, называемого процессом быстрого захвата нейтронов или r-процессом.

Вопрос о том, какие астрономические события могут производить самые тяжелые элементы, оставался загадкой на протяжении десятилетий. Сегодня считается, что r-процесс может происходить во время сильных столкновений между двумя нейтронными звездами, между нейтронной звездой и черной дырой или во время редких взрывов после смерти массивных звезд. Такие высокоэнергетические события происходят во Вселенной очень редко. Когда это происходит, нейтроны включаются в ядра атомов, а затем превращаются в протоны. Поскольку элементы в периодической таблице определяются количеством протонов в их ядрах, процесс r создает более тяжелые ядра по мере захвата большего количества нейтронов.

Некоторые из ядер, образованных в результате r-процесса, радиоактивны, и для их распада на стабильные ядра требуются миллионы лет. Йод-129 и кюрий-247 — два таких ядра, которые были образованы до образования Солнца. Они были включены в твердые тела, которые в конечном итоге упали на земную поверхность в виде метеоритов. Внутри этих метеоритов в результате радиоактивного распада образовался избыток стабильных ядер. Сегодня это превышение можно измерить в лабораториях, чтобы определить количество йода-129 и кюрия-247, которые присутствовали в Солнечной системе непосредственно перед ее образованием.

Почему эти два ядра r-процесса такие особенные? У них есть обычное свойство: они распадаются почти с одинаковой скоростью. Другими словами, соотношение между йодом-129 и кюрием-247 не изменилось с момента их создания миллиарды лет назад.

«Это удивительное совпадение, особенно с учетом того, что эти ядра являются двумя из пяти радиоактивных ядер r-процесса, которые можно измерить в метеоритах. Когда соотношение йода-129 и кюрия-247 застыло во времени, как доисторическое ископаемое, мы можем напрямую взглянуть на последнюю волну производства тяжелых элементов, которая сформировала состав Солнечной системы и всего в ней».

Бенуа Котэ, обсерватория Конколы

Йод с его 53 протонами создается легче, чем кюрий с его 96 протонами. Это связано с тем, что для достижения большего числа протонов кюрия требуется больше реакций захвата нейтронов. Как следствие, соотношение йода-129 и кюрия-247 сильно зависит от количества нейтронов, которые были доступны во время их создания.

Команда рассчитала соотношение йода-129 к кюрию-247, синтезируемые столкновениями нейтронных звезд и черных дыр, чтобы найти правильный набор условий, воспроизводящих состав метеоритов. Они пришли к выводу, что количество нейтронов, доступных во время последнего события r-процесса перед рождением Солнечной системы, не могло быть слишком большим. В противном случае было бы образовано слишком много кюрия по сравнению с йодом. Это означает, что очень богатые нейтронами источники, такие как материя, оторвавшаяся от поверхности нейтронной звезды во время столкновения, вероятно, не играли важной роли.

Так что же создало эти ядра r-процесса ? Хотя исследователи могли предоставить новую информативную информацию о том, как они были созданы, они не смогли определить природу астрономического объекта, который их создал. Это связано с тем, что модели нуклеосинтеза основаны на неопределенных ядерных свойствах, и до сих пор неясно, как связать доступность нейтронов с конкретными астрономическими объектами — такими, как массивные взрывы звезд и сталкивающиеся нейтронные звезды.

С помощью этого нового диагностического инструмента достижения в области астрофизического моделирования и понимания ядерных свойств могут выявить, какие астрономические объекты создают самые тяжелые элементы Солнечной системы.

Читать также:

Физики создали аналог черной дыры и подтвердили теорию Хокинга. К чему это приведет?

Появилась первая панорама Марса. Она состоит из 142 фото!

От Антарктиды отделился гигантский айсберг. Его площадь — 1270 квадратных километров.

Ученые обнаружили предел скорости в квантовом мире.

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
Создано музыкальное приложение для реабилитации после инсульта
Наука
«Эффект аккордеона» превращает жесткий графен в эластичный материал
Наука
ИИ восстановил имя автора свитка, который пережил последний день Помпеи
Наука
Частный лунный модуль вышел на орбиту спутника после двух месяцев полета
Космос
Предок тираннозавра «иммигрировал» в Америку из Азии, считают ученые
Наука
Обновленный Gemini 2.5 Pro от Google возглавил рейтинг ИИ для разработчиков
Новости
Ученые решили проблему, которая мешала запуску термоядерных реакторов почти 70 лет
Наука
Китайское «супероружие» для подводных диверсий оказалось не таким, как считалось
Новости
Отключение мобильного интернета в Москве: какие последствия для бизнеса
Новости
Киберполиция назвала новые схемы мошенников: как они воруют аккаунты на «Госуслугах»
Новости
Хокинг предсказал гибель Земли: оказалось, НАСА сочло угрозу реальной
Наука
Создатель Ethereum признал свои ошибки и решил изменить криптовалюту
Новости
«Ред ОС 8» заработала на Arm-платформах — теперь и на «Байкале»
Новости
Компания Цукерберга использовала уязвимость подростков для рекламы
Новости
Старая модель не работает: ученые ищут новые объяснения устройства Вселенной
Космос
Пыльцевая буря накрыла центр России: что это и как защититься аллергикам
Наука
3400-летние артефакты загадочного племени нашли на вершине потухшего вулкана в Венгрии
Наука
На 3D-принтере напечатали электрод, который работает эффективнее ЭЭГ
Наука
Древесная стружка и ветки: открыт необычный способ мумификации с удивительной эффективностью
Наука
Физики MIT наблюдали квантовые взаимодействия между атомами
Наука