Ученые разработали новую методику микроскопии, она позволяет получать трехмерные изображения субклеточных структур сверхвысокого разрешения из биологических тканей на глубине около 100 мкм. Этот метод поможет выявить изменения, которые происходят в нейронах с течением времени, во время обучения или в результате болезни.
Новый подход — это расширенная микроскопия, основанная на методе подавления спонтанного испускания (STED) — прорывной методики, позволяющей достичь наноразмерного разрешения за счет преодоления дифракционного предела оптических микроскопов. За разработку этой методики Штефан Хелл получил Нобелевскую премию по химии в 2014 году.
«Наш микроскоп — это первый в мире прибор, который позволяет достичь 3-D STED разрешения глубоко внутри живой ткани, — отметили исследователи. — Такие достижения в технологии глубокой визуализации тканей позволят исследователям напрямую визуализировать субклеточные структуры и динамику в их родной среде. Способность изучать клеточное поведение имеет решающее значение для получения полного понимания биологических явлений для биомедицинских исследований и развития фармацевтики».
STED-микроскопия чаще всего используется для отображения культивируемых клеточных образцов. Использование методики для получения изображений толстых тканей или животных намного сложнее. Это ограничение возникает из-за того, что ткань не позволяет свету проникать глубоко и правильно фокусироваться, тем самым ухудшая возможности микроскопа по достижению сверхвысокого разрешения.
Для решения этой задачи исследователи объединили STED-микроскопию с двухфотонным возбуждением (2PE) и адаптивной оптикой. Эта технология корректирует искажения в форме света, оптические аберрации, которые возникают при визуализации в ткани и через нее.
Читать далее:
Физики создали аналог черной дыры и подтвердили теорию Хокинга. К чему это приведет?
Mars Express помог выяснить, куда и как исчезла вода с Красной планеты
Самое таинственное природное явление. Откуда берется шаровая молния и чем она опасна?