Гибкую электронику сделали проще и надежнее: это приблизит нас к полностью гибким дисплеям

Ученые создали новый метод производства гибкой электроники: в нем высокопроизводительный кремний печатают сразу на гибкие материалы.

Инженеры из группы гибкой электроники и сенсорных технологий Университета Глазго (BEST) рассказывают, как они оптимизировали и улучшили традиционный процесс создания гибкой электроники на большой площади. Ранее самую передовую гибкую электронику производили в основном с помощью трансферной печати: это трехэтапный процесс, немного похожий на чернильную печать на документах или визе. 

Сначала полупроводниковую наноструктуру на основе кремния проектируют и делают на подложке. На втором этапе наноструктуру снимают с подложки мягким полимерным штампом. На заключительном этапе наноструктуру переносят со штампа на другую подложку, которая специально подходит для гибких устройств, например это может быть мягкая робототехника или гибкий дисплей. 

Однако процесс трансферной печати имеет много ограничений, которые затрудняют создание крупных, сложных и гибких устройств. 

Это можно сравнить с некачественным штампом в паспорте, из-за непропечатанных чернил его сложнее прочесть или верифицировать, аналогично этому неполная или некачественная полимерная печать на подложке может привести к неправильной работе техники. 

Поэтому команда из Глазго применила другой подход, в нем она полностью исключила второй из этап типичного процесса трансферной печати. Вместо переноса наноструктур на мягкий полимерный штамп перед его переносом на конечную подложку, теперь печать происходит прямо на гибкой поверхности.

Сначала инженеры сделали тонкую кремниевую наноструктуру размером менее 100 нм. Затем покрыли подложку ультратонким слоем химических веществ для улучшения адгезии. Подготовленную подложку обернули вокруг металлической трубки и, далее, эту трубку прокатили по кремниевой пластине, перенося ее на гибкий материал.

Тщательно оптимизировав процесс, команде удалось создать очень однородную печать на площади в 10 см² с выходом переноса в 95% — это значительно выше, чем в большинстве обычных процессов печати с переносом в нанометровом масштабе.

Читать далее:

Замедление вращения Земли вызвало выброс кислорода на планете

Исследование: течение Гольфстрим может стать причиной необратимого коллапса на планете

Посмотрите на наскальное искусство неандертальцев, которому более 60 тыс. лет

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
Запуск Falcon 9 завершился успехом: что было на борту миссии
Космос
Прототип Boom Supersonic XB-1 приблизился к звуковому барьеру
Новости
Ученые заглянули внутрь нейтронных звезд, используя квантовую физику
Космос
Квантовые симуляторы: объяснение от ученого
Мнения
Источник в СМИ назвал возможную причину сбоя рунета
Новости
Мошенники начали выдавать себя за начальников в рабочих чатах: как это работает
Новости
Холодные атомы этого металла могут создавать новые состояния материи
Наука
Древние артефакты в Украине раскрыли тайны навигации викингов
Наука
Послушайте, как звучат вспышки на Солнце: данные собрал Solar Orbiter  
Космос
Тяжелый беспилотник на водородных топливных ячейках впервые испытали в Китае
Новости
Ученые создали катализатор, который нарушает законы физики
Наука
Физики обнаружили необычные магнитные свойства в трехслойном графене
Наука
Биоинженеры создали ДНК-робота, который может менять форму искусственной клетки
Наука
«Горы» на нейтронных звездах могут вызывать рябь в пространстве-времени
Космос
На телах древних мумий из Перу нашли сложные узоры татуировок
Наука
У черной дыры прячется белый карлик, движущийся с половиной скорости света
Космос
Стартап из России разрабатывает нанопротез для восстановления поврежденных нервов
Наука
Генетики разгадали секреты выживания устойчивой к антибиотикам бактерии
Наука
Астрофизики разгадали тайну космических ускорителей частиц
Космос
Илон Маск: Neuralink поставил мозговой имплант третьему пациенту
Новости