Квантовая странность помогла ученым разглядеть «невидимые» объекты: как это работает

Ученые придумали, как использовать квантовую странность для улучшенных электронных микроскопов. Рассказываем главное.

Электронные микроскопы — это мощные инструменты будущего. Их используют для получения изображений с высоким разрешением. Несмотря на то, что они уже достаточно хороши, их можно улучшить, используя свойства квантового мира.

Два новых исследования

Два новых исследования, проведенные сотрудниками лаборатории МакМоррана Университета Орегона, предлагают новые идеи о том, как улучшить электронные микроскопы. Оба подразумевают использование фундаментального принципа квантовой механики: электрон может вести себя одновременно как волна и как частица. Это один из многих примеров квантовой странности, когда поведение субатомных частиц, кажется, нарушает законы классической физики.

В первом исследовании ученые предлагают изучать объект под микроскопом, не вступая с ним в контакт, предотвращая повреждение хрупких и невидимых невооруженному глазу образцов. А в рамках второй работы физики придумали, как одновременно выполнять сразу два измерения на объекте. Оба исследования публикует научный журнал Physical Review Letters.

Проблемы современных технологий

«Трудно наблюдать за чем-то, не влияя на объект, особенно в мелких деталях, — объясняет Бен МакМорран. — Похоже, квантовая физика позволяет видеть больше, ничего не разрушая».

Электронные микроскопы используются для получения крупных планов белков и клеток, а также небиологических образцов, таких как новые виды материалов. Вместо света, используемого в более традиционных микроскопах, электронные устройства фокусируют пучок электронов на образце. При взаимодействии пучка с образцом некоторые характеристики последнего изменяются. Детектор измеряет изменения в луче, которые затем преобразуются в изображение с высоким разрешением.

Но этот мощный электронный луч может повредить хрупкие структуры в образце. Со временем он может испортить те самые детали, которые пытаются изучить ученые.

Как ее решить?

В качестве обходного пути команда Макморрана использовала мысленный эксперимент Элицура – ​​Вайдмана, опубликованный в начале 1990-х годов. В нем физики предлагали способ обнаружения чувствительной бомбы, не прикасаясь к ней и не рискуя ее взорвать.

Трюк основан на инструменте, известный как дифракционная решетка. Это тонкая мембрана с микроскопическими прорезями в ней. Когда электронный пучок попадает на дифракционную решетку, он разделяется на две части.

При правильном выравнивании этих светоделительных дифракционных решеток после разделения электрон рекомбинируется так, что попадает только на один из двух возможных выходов. Так, в новой установке электроны не сталкиваются с образцом, как в традиционной электронной микроскопии. Вместо этого рекомбинация электронного луча дает информацию об образце под микроскопом.

В другом исследовании, команда Макморрана использовала аналогичную дифракционную решетку для измерения образца в двух местах одновременно. Они разделили электронный пучок так, чтобы он проходил по обе стороны от маленькой золотой частицы, измеряя крошечные биты энергии, которые электроны передавали частице с каждой стороны.

Такой подход выявит чувствительные нюансы атомарного уровня в образце и позволит понять, как в нем взаимодействуют частицы. Это позволяет посмотреть на две отдельные его части, а затем объединить их вместе и проверить данные об их колебании.

Почему это важно?

Хотя в этих двух исследованиях проводятся разные виды измерений, они используют одну и ту же базовую установку, известную как интерферометрия. Члены команды Макморрана считают, что их инструмент может быть полезен не только в их собственной лаборатории, но и для самых разных экспериментов.

При наличии правильных материалов и инструкций установка можно добавить ​​ко многим существующим электронным микроскопам. Другие лабораторий уже проявили к ней интерес и хотят использовать интерферометр в собственных микроскопах.

Читать далее:

За ней охотились столетиями: что нам известно о планете Вулкан рядом с Солнцем

Физики экспериментально подтвердили новый фундаментальный закон для жидкостей

Астрономы нашли планету недалеко от Земли: у нее очень странная орбита

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
В каких странах больше боятся замены людей на ИИ, показало исследование
Наука
Мини-землетрясения под ледяным щитом Гренландии могут изменить уровень моря
Наука
Посмотрите, как Blue Ghost летит над обратной стороной Луны
Космос
Польский стартап представил робота с искусственными мышцами и костями
Новости
Ископаемые находки меняют представление об эволюции неандертальцев
Наука
Microsoft представила квантовый чип Majorana 1 «из новой формы материи»
Новости
Посмотрите на огненный дождь в небе: фрагменты ракеты SpaceX упали в Европе
Космос
Жители России смогут наблюдать редкое астрономическое явление в феврале
Космос
Ученые продвинулись на пути к сверхпроводимости при комнатной температуре
Наука
ИИ-лаборант от Google поможет ученым ускорить открытия
Наука
SR Space испытала ключевые элементы метанового двигателя РД-1
Космос
Китайская камера сможет с орбиты различать лица людей на земле
Новости
Названа главная опасность наушников с шумоподавлением
Наука
Крупнейший в мире ИИ-центр обработки данных построят в Южной Корее
Новости
Квантовое доказательство души: ученые зафиксировали активность мозга перед смертью
Наука
Что случится, если через тело пройдет крошечная черная дыра: ученые нашли ответ
Космос
Случайный цифровой сигнал помог решить главную проблему астрономии
Космос
Минцифры уточнило правила включения софта в реестр российского ПО  
Новости
Ученые разглядели уникальный климат на планете в 900 световых годах от Земли
Космос
«Джеймс Уэбб» наблюдал «световое шоу» в центре Млечного Пути
Космос