Фотоны заставили «общаться» друг с другом: зачем это нужно и почему заняло 15 лет

Ученые могут сделать квантовый мир реальностью, однако на их пути есть много препятствий. Одно из них — нежелание фотонов «общаться». «Хайтек» рассказывает о новом методе физиков, который решит проблему и к чему это приведет.

Фотоны — частицы, представляющие собой квант света, уже продемонстрировали большой потенциал для развития квантовых технологий. В частности, физики изучают возможность создания фотонных кубитов (квантовых единиц информации), которые можно передавать на большие расстояния с помощью фотонов. Однако на этом пути есть важное препятствие.

В чем проблема?

Несмотря на многообещающие результаты предварительных экспериментов, необходим научный прорыв, прежде чем фотонные кубиты можно реализовать в больших масштабах. Например, известно, что фотоны могут терять энергию и излучение при перемещении из одной точки в другую и не взаимодействуют друг с другом.

Исследователи из Копенгагенского университета в Дании, Instituto de Física Fundamental IFF-CSIC в Испании и Рурского университета Бохума в Германии недавно разработали стратегию, которая поможет преодолеть одну из этих проблем, а именно отсутствие фотон-фотонного взаимодействия. Их метод, в конечном итоге, поможет в разработке более сложных квантовых устройств.

Более 15 лет экспериментов

Ученые уже давно работают над детерминированным сопряжением одиночных квантовых излучателей (квантовых точек) с одиночными фотонами — более 15 лет. В итоге, они разработали метод, основанный на нанофотонных волноводах.

Детерминированность объекта можно объяснить с помощью учения о детерминизме (от лат. determinare — «ограничивать, очерчивать, определять»). Согласно ему, все объекты взаимосвязаны, а все явления и процессы взаимно определены.

Обычно эти устройства применяли для детерминированных однофотонных источников и источников многофотонной запутанности. Однако оно пригодилось и для инициирования нелинейных операций с фотонами.

Волновод — искусственный или естественный направляющий канал, в котором может распространяться волна. Поток мощности, который переносится волной, находится именно внутри самого канала. Еще один вариант — он сосредоточен в той области пространства, которая примыкает к каналу. 

Концепцию таких операций впервые показали в 2015 году. Однако при дальнейшем исследовании этого эффекта они столкнулись с трудностями. Они связаны с вопросами фундаментальной физики, которая лежит в основе этого сложного, однофотонного и нелинейного взаимодействия.

В рамках предыдущих исследований ученые обнаружили, что физика, которая «отвечает» за нелинейное взаимодействие импульсов света, пригодилась и для создания фотонных квантовых вентилей и «сортировщиков фотонов».

Так, ученые провели первое экспериментальное исследование нелинейных квантовых импульсов, которые подвергаются нелинейному взаимодействию из-за связи с детерминистически связанным квантовым излучателем.

Что сделали ученые?

В ходе нового эксперимента исследователи использовали эффективную и когерентную связь одиночного квантового излучателя с нанофотонным волноводом. Цель — обеспечить нелинейное квантовое взаимодействие между однофотонными волновыми пакетами.

Волновой пакет — определенная совокупность волн, которая обладает разными частотами. Они описывают обладающую волновыми свойствами формацию, в общем случае ограниченную во времени и пространстве. 

Для этого ученые использовали одну квантовую точку — частицу размером в нанометр, которая ведет себя как двухуровневый атом. Ее встроили в фотонно-кристаллический волновод.

Примечательность таких систем, что связь в них является детерминированной. Даже один фотон, запущенный в волновод, взаимодействует с квантовой точкой. Если отправить импульсы, которые содержат два или более фотона, это вызовет квантовые корреляции. Все потому, что только один фотон за раз может взаимодействовать с квантовой точкой. В итоге, управляя длительностью этого квантового импульса, ученые могут настроить эти корреляции и взаимодействие между фотонами.

Используя свой экспериментальный метод, ученые, по сути, смогли управлять фотоном, используя второй, который опосредован  квантовым излучателем. Другими словами, они успешно реализовали нелинейное фотон-фотонное взаимодействие, заставили частицы «общаться».

К чему это приведет?

В итоге, ученые разработали метод, который позволяет фотонам эффективно взаимодействовать друг с другом посредством связи с квантовыми точками. Это поможет создать новые направления для создания фотон-фотонных квантовых вентилей. Также открытие пригодится для создания детерминированных устройств сортировки фотонов, которые необходимы, например, для квантовых повторителей.

Квантовые повторители позволяют создать запутанность в удаленных узлах без физической отправки запутанного кубита на все расстояние. Проще говоря, они усиливают сигнал, и не дают фотонам затухать.

Новая стратегия имеет важные последствия как для исследований в области квантовой физики, так и для развития квантовых технологий. Например, метод откроет новые возможности для разработки квантово-оптических устройств, а также позволит физикам экспериментировать с адаптированными сложными фотонными квантовыми состояниями.

Что дальше?

Ученые не собираются останавливаться и планируют расширить эксперимент. На фундаментальном уровне они хотят глубже понять, как на квантовые состояния света влияют путешествие через одну квантовую точку. Однако ученые уверены — это квантовое взаимодействие можно применить на практике.

Сейчас физики пытаются использовать нелинейное фотон-фотонное взаимодействие, реализованное в недавнем исследовании, для моделирования колебательной динамики молекул. Это возможно, если сопоставить колебательную динамику сложных молекул с распространением фотонов в усовершенствованных фотонных схемах.

Читать далее:

НАСА раскрыло происхождение Хаумеи — самой загадочной планеты Солнечной системы

Живые организмы сделали Марс непригодным для обитания

Печень может работать более 100 лет: ученые рассказали, как это возможно

На обложке: два фотона, распространяющиеся в волноводе и взаимодействующие с одним квантовым излучателем. В итоге, ученые добились фотон-фотонного взаимодействия, в результате которого возникают корреляции. Предоставлено: Ле Жанник и др.

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
Найдены останки римского легионера, которого сурово наказали за предательство
Наука
Новая смелая гипотеза переписывает историю Вселенной
Космос
Эйнштейн был прав: его открытие поможет раскрыть тайну нейтронных звезд
Космос
Гель для защиты от радиации разработали в Европе
Космос
Шаг к созданию мантии-невидимки: ученые добились отрицательного преломления света 
Наука
Telegram выкатил крупное обновление по работе с видео
Новости
Вошел как влитой: в России создали легко интегрируемый аналог Microsoft AD
Технологии
Китайский робопес впервые участвовал в пожарно-спасательной операции
Новости
Таинственные космические огни оказались странными остатками взорвавшихся звезд
Космос
Британский стартап показал робота, который манипулирует руками быстрее человека
Новости
Четвертому пациенту пересадили модифицированную почку свиньи
Наука
Посмотрите на цветные облака, которые плывут в небе над марсоходом «Кьюриосити»
Космос
Инженеры MIT напечатали дешевый двигатель для маленьких спутников
Новости
Началась разработка космического двигателя на воде: что о нем известно
Космос
Через Млечный Путь несется пара объектов на гиперскорости: что о них известно
Космос
Названы опасные побочные эффекты использования ИИ для мозга
Наука
НАСА рискуют провалить главную лунную программу и не только
Кейсы
Прибор для анализа крови без уколов привлек 35 млн рублей от стартап-студии
Наука
«Джеймс Уэбб» рассмотрит астероид, который может угрожать Земле
Космос
Телескоп «Евклид» наблюдал редкое кольцо Эйнштейна в соседней галактике
Космос