Японские ученые научили ИИ генерировать изображения на основе мысленных образов

Исследователи «декодируют» объекты и ландшафты из воображаемых образов на основе активности мозга.

Ученые из Национального института квантовой науки и технологий (QST) и Университета Осаки разработали подход для распознавания с помощью ИИ сложных визуальных образов на основе анализа функциональной магниторезонансной томографии (фМРТ) мозга. По словам исследователей, подход можно будет использовать для изучения иллюзий, галлюцинаций и снов. 

Исследователи показали участникам около 1200 изображений, а затем проанализировали и количественно оценили корреляцию между сигналами мозга и зрительными стимулами с помощью фМРТ. Карты связей ученые использовали для обучения генеративного ИИ расшифровке и воспроизведению мысленных образов на основе активности мозга.

Принцип обучения нейросети (а) и декодирования изображений (б). Иллюстрация: Naoko Koide-Majima et al., Neural Networks

В предыдущих исследованиях различные группы ученых воссоздавали изображения, которые видели люди, путем анализа активности их мозга. Но сделать то же самое с мысленными образами было слишком сложно. Немногочисленные публикации ограничивались простыми изображениями — буквами или геометрическими фигурами.

Метод, предложенный японскими исследователями, предполагал восстановление как картинок, которые участникам показывали во время сканирования, так и тех, что их просили представить. Правда, для эксперимента участники должны были представлять изображения, которые им показывали раньше.

Результаты показали, что хотя анализ активности мозга и не воспроизводит в точности исходную картинку, тем не менее получившиеся яркие изображения содержат отчетливые детали исходных снимков. Дальнейшее развитие технологии найден применение для изучения работы мозга и медицинских исследований, полагают ученые.


Читать далее:

Рядом с Землей нашли теплую планету, где год длится 22 дня

10 триллионов кадров в секунду: посмотрите, как ютуберы засняли скорость света

Странный объект, запертый между Сатурном и Ураном, меняется прямо сейчас

На обложке: пример реконструкции изображения: слева изображение, которое представлял участник, справа — реконструированное нейросетью. Иллюстрация: Naoko Koide-Majima et al., Neural Networks

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
Юпитер оказался не таким, как считали ученые: открытие опровергает гипотезу о гиганте
Космос
Физики придумали, как найти новые измерения в пространстве
Наука
Посмотрите на первое фото кометы C/2024 G3 в России: она прилетает раз в 160 000 лет
Космос
Ученые нашли необычные частицы: их поведение невозможно объяснить обычной физикой
Наука
Байден запретит поставки ИИ-чипов в Россию: что ответила NVIDIA
Новости
300 млрд киловатт-часов: Китай строит крупнейшую в мире гидроэлектростанцию
Новости
Парниковые газы предложили хранить в стенах домов для борьбы с изменением климата
Наука
Ученые разгадали тайну, как древние птерозавры поднялись в воздух
Наука
Эксперимент показал, что фотоны света могут вести себя как частицы темной материи
Наука
ИИ создал крупнейшую базу данных фотографий северного сияния
Наука
Молекулы РНК превратили в «фонарики», чтобы отслеживать их работу в клетке
Наука
Европейский зонд показал северный полюс Меркурия в рекордных деталях
Космос
Посмотрите, как изменится внешний вид людей через 30 лет  
Наука
Посмотрите на первые фото Tesla Model Y без камуфляжа  
Новости
«Тостер» для смартфона обновляет зарядку гаджета за секунды
Новости
Гаджет, который научился читать мысли человека, показали на CES 2025
Новости
Эта камера будет снимать на Луне: Nikon представила прототип на CES 2025  
Новости
Ярчайший гамма-всплеск в истории связали с теорией струн и темной материей  
Новости
Наука в фокусе: кто и зачем делает научно-популярные видеоблоги в России
Кейсы
Telegram раскрыл данные о 2000 пользователях в после ареста Дурова
Новости