Физики впервые засняли странное квантовое состояние материи

Ученые впервые увидели, как выглядит Вигнеровский молекулярный кристалл.

Электроны обычно двигаются очень быстро через любую несвязанную материю. Однако в 1934 году физик Юджин Вигнер предположил, что при низкой температуре и плотности свободные электроны могут формировать особую квантовую структуру — кристаллическую решетку, которую позже назвали Вигнеровским кристаллом. Три года назад ученые получили косвенные доказательства существования этой формы материи, а в этом году впервые сделали ее прямые изображения. Физики также наблюдали новую разновидность этого кристалла — Вигнеровский молекулярный кристалл.

Кристалл — это структура, в которой атомы выстраиваются в определенном порядке, образуя решетку с повторяющимся узором. Вигнер предположил, что при низкой плотности и температуре электроны могут также выстраиваться в кристаллическую решетку. В этом случае они подчиняются законам квантовой механики, а не классической физики, что и делает Вигнеровский кристалл квантовой формой материи.

Физики долго пытались получить изображения Вигнеровского молекулярного кристалла. В обычных Вигнеровских кристаллах электроны формируют структуру, похожую на соты, а в молекулярных — создают искусственные «молекулы» из двух и более электронов.

С помощью сканирующего туннельного микроскопа, использующего квантовое туннелирование, физики впервые сделали изображения нового квантового состояния материи. Для этого они создали наноматериал — закрученную муаровую сверхрешетку из дисульфида вольфрама (tWS2), которую нанесли на слой гексагонального нитрида бора толщиной 49 нанометров.

Изображения, полученные с помощью сканирующего туннельного микроскопа, на которых видно, как электроны превращаются в одну Вигнеровскую молекулу (справа внизу). Фото: Berkeley Lab

Физики обнаружили, что электроны, попадая на tWS2, заполняют каждую ячейку материала шириной 10 нанометров всего двумя или тремя электронами. Это привело к образованию массива из «молекул», который сформировал Вигнеровский молекулярный кристалл.

Ученые планируют продолжить изучение этого нового квантового состояния, чтобы понять, как его можно применять в будущем.

Результаты исследования опубликованы в журнале Science и доступны на сайте препринтов  arXiv.

Читать далее:

Биологи случайно нашли животное, которое стареет в обратном направлении

Одно из библейских чудес Иисуса Христа объяснили

Эта пищевая добавка предотвращает 19 видов рака — исследование

Обложка: Kandinsky by Sber AI

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
Физики придумали, как раскрыть тайну темной материи
Космос
Ученые рассказали, как экстремальный холод влияет на сон
Наука
Марсианский метеорит раскрыл тайны воды на Красной планете
Космос
Хакеры удаленно взломали компьютер, используя соседний Wi-Fi
Новости
«Уэбб» заснял три огромные «невозможные» галактики
Космос
Телескоп запечатлел столкновение галактик на скорости 3,2 млн км/ч
Космос
Укус вместо укола: создана вакцина от малярии, распространяемая комарами
Наука
Физики определили форму отдельного фотона
Наука
Создатели ChatGPT планируют выпустить собственный браузер
Новости
Плотность промышленных роботов в мире удвоилась за семь лет
Новости
В Гибралтаре нашли «фабрику», на которой неандертальцы варили клей
Наука
Nvidia раскрыла, какие товары компании будут в дефиците и когда
Новости
Посмотрите на первое в истории фото звезды из другой галактики
Космос
Чрезвычайно молодую планету нашли у звезды с «кривым» диском
Космос
Предложен способ навигации дронов без GPS: по «отпечаткам рельефа»
Новости
Ученые раскрыли тайну гигантских черных дыр ранней Вселенной
Космос
Microsoft и Atom Computing выпустят коммерческий квантовый компьютер в 2025 году
Новости
Создан робот-голубь, который летает как настоящая птица
Наука
На страницах тысячелетнего Голубого Корана нашли скрытый текст
Наука
Уязвимость ИИ: типы атак LLM-injection и способы защиты от них
Технологии