Ученые создали самый маленький в мире «холодильник»

Команде исследователей, возглавляемой профессором физики Калифорнийского университета в Лос-Анджелесе Крисом Риганом, удалось создать термоэлектрические охладители толщиной в 100 нанометров — примерно одну десятимиллионную часть метра. Кроме того, они разработали инновационный метод измерения охлаждающей способности новых установок. Результаты публикует журнал ACS Nano.

«Мы сделали самый маленький холодильник в мире», — заявил Крис Риган, ведущий автор статьи о новом исследовании.

Однако, ученые объясняют, эти крохотные устройства не являются холодильниками в обычном понимании — здесь нет дверей или контейнеров. Но в более крупных масштабах та же технология используется для охлаждения компьютеров и других электронных устройств, а также для регулирования температуры в оптоволоконных сетях и для уменьшения «шума» изображения в телескопах высшего класса и цифровых камерах.

Эти устройства, созданные путем размещения двух разных полупроводников между металлизированными пластинами, работают двумя способами. При нагревании одна сторона становится горячей, а другая остается прохладной; эту разницу температур можно использовать для выработки электроэнергии. В будущем аналогичные устройства могут использоваться для улавливания тепла из выхлопных газов автомобиля для питания его кондиционера.

Но этот процесс также можно запустить в обратном направлении. Когда к устройству подается электрический ток , одна сторона становится горячей, а другая — холодной, что позволяет ему служить в качестве охлаждающего устройства. Эта расширенная технология может однажды заменить систему сжатия пара в реальном холодильнике и сохранить, например, газировку холодной в реальной жизни.

Стандартное термоэлектрическое устройство, состоящее из двух полупроводниковых материалов, зажатых между металлизированными пластинами. Предоставлено: Wikimedia Commons.

Для создания своих термоэлектрических охладителей команда Ригана, в которую вошли шесть студентов UCLA, использовала два стандартных полупроводниковых материала: теллурид висмута и теллурид сурьмы-висмута. Они прикрепили обычный скотч к кускам обычного сыпучего материала, сняли его, а затем извлекли тонкие однокистальные хлопья из материала, все еще прилипшего к ленте. Из этих хлопьев они сделали функциональные устройства толщиной всего 100 нанометров и общим активным объемом около 1 кубического микрометра, невидимые невооруженным глазом.

«Мы побили рекорд самого маленького термоэлектрического холодильника в мире более чем в десять тысяч раз», — заявил Синь И Лин, один из авторов статьи и бывший студент исследовательской группы Рейгана.

Сосредоточив внимание на наноструктурах — устройствах, по крайней мере, с одним размером в диапазоне от 1 до 100 нанометров — Риган и его команда надеются открыть новые способы синтеза более эффективных объемных материалов. 

Еще одна отличительная черта наноразмерного «холодильника» — то, что он может реагировать практически мгновенно.

«Как только мы поймем, как термоэлектрические охладители работают на атомном и почти атомном уровнях, — объясняет Риган, — мы сможем масштабироваться до макроуровня, где есть еще большая выгода».

Это изображение, полученное с помощью электронного микроскопа, показывает два полупроводника охладителя —  одну чешуйку теллурида висмута и одну — теллурида сурьмы-висмута — перекрывающиеся в темной области в центре, где происходит большая часть охлаждения. Маленькие «точки» — это наночастицы индия, которые команда использовала в качестве термометров. Предоставлено: UCLA / Regan Group.

Измерение температуры в таких крошечных устройствах — непростая задача. Оптические термометры имеют низкое разрешение при таких малых масштабах, в то время как методы сканирующего зонда требуют специализированного дорогостоящего оборудования. Оба подхода требуют кропотливой калибровки. Риган высоко оценил работу своих учеников-исследователей по разработке и измерению производительности наноразмерных устройств.

Читать также

В эпоху экосистем: как ИТ-гиганты превращаются в интерфейсы нашего быта

Ледник «Судного дня» оказался опаснее, чем думали ученые. Рассказываем главное

GitHub заменил термин «мастер» на нейтральный аналог

Подписывайтесь
на наши каналы в Telegram

«Хайтек»новостионлайн

«Хайтек»Dailyновости 3 раза в день

Первая полоса
Ученые впервые наблюдали, как орангутанг занимается самолечением
Наука
SpaceX не смогла скрыть полет ракеты над Россией: в сети публикуют фото
Космос
Зонд «Эйнштейн» показал первую партию редких космических фото
Космос
Миссию по доставке образцов с загадочной стороны Луны запустили в Китае
Наука
Ученые подтвердили ключевые события из Библии
Наука
Недалеко от нас есть планета, где ветер дует быстрее пули
Космос
Найден необычный способ бороться с хроническим стрессом
Наука
Посмотрите на самый редкий торнадо, который пронесся над США
Наука
Над Землей пролетел астероид, который вращался быстрее всех остальных
Космос
Ученые показали лицо женщины, которая жила 75 000 лет назад
Наука
Анализ генов показал, как древние водоросли вышли на поверхность планеты
Наука
Древняя технология поможет вырастить растения на Марсе, считают ученые
Космос
Физики из MIT добились рекордной близости между атомами для квантовых исследований
Наука
В Германии на ветряную электростанцию впервые установили деревянные лопасти
Новости
Инженеры разработали искусственную пиявку для безболезненного забора крови у детей
Наука
Solar Orbiter запечатлел «пушистую» корону Солнца в завораживающих деталях
Космос
Китай отправляет миссию на обратную сторону Луны: как смотреть онлайн
Космос
ИИ нашел асимметрию материи и антиматерии на Большом адронном коллайдере
Наука
TikTok вернулся в Россию? Что известно прямо сейчас
Новости
В Японии разработали устройство 6G, которое передает данные со скоростью 100 Гбит/с
Новости